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ABSTRACT
We have recently shown [1] that fully-localized three-

dimensional wave envelopes (so-called dromions) can exist and
propagate on the surface of ice-covered waters. Here we show
that the inertia of the ice can play an important role in the size,
direction and speed of propagation of these structures. We use
multiple-scale perturbation technique to derive governing equa-
tions for the weakly nonlinear envelope of monochromatic waves
propagating over the ice-covered seas. We show that the govern-
ing equations simplify to a coupled set of one equation for the
envelope amplitude and one equation for the underlying mean
current. This set of nonlinear equations can be further simpli-
fied to fall in the category of Davey-Stewartson equations [2].
We then use a numerical scheme initialized with the analytical
dromion solution of DSI (i.e. shallow-water and surface-tension
dominated regimes of Davey-Stewartson equation) to look for
dromion solution of our equations. Dromions can travel over
long distances and can transport mass, momentum and energy
from the ice-edge deep into the solid ice-cover that can result
in the ice cracking/breaking and also in posing dangers to ice-
breaker ships.

INTRODUCTION
Two-dimensional solitary waves were first observed by John

Scott Russell [3, 4]. About half a century later Korteweg and
de Veries derived the nonlinear governing equations and found
analytical form of 2D solitary waves. The profile of a two-
dimensional solitary wave- similar to the one Russell observed-

decays exponentially fast in all horizontal directions except
along a ray. Later it was shown that governing equations for
two-dimensional weakly nonlinear envelope of monochromatic
waves reduces to the Nonlinear Schroedinger equation [5] and
it too admits soliton solutions. Extension of KdV equation to
three-dimension is obtained by Kadomtsev and Petviashivili [6]
(long waves and slow transverse dependence) and that of NLS
equation by Davey and Stewartson [2].

On water dominated by surface tension(i.e., Bond number>
1/3), the KP equation (KPI) admits three dimensional fully lo-
calized structures named lumps [7, 8] and the long wave limit
of DS equation (DSI) is found to admit dromions [9–12]. Both
lumps and dromions are capable of propagating on water with
constant speeds without changing their forms. The difference is
that dromions decay exponentially in space while lumps alge-
braically. Also dromions form at the intersection of line-solitary
mean-flow tracks and therefore their underlying structure to the
leading order extends to infinity or finite boundaries.

In polar area, waves can propagate on the surface of ice-
covered waters. For these waves to exist bending of the ice
must be taken into account and therefore these waves are often
calledflexural-gravitywaves. Many studies have been done on
flexural gravity waves based on two dimensional model or/and
linear wave theory [13–15]. Due to the flexural rigidity of ice,
dromions can exist on water of depth much larger than that for
capillary-gravity waves [1]. This study is motivated by observa-
tions of (relatively) large amplitude localized waves deep inside
the icepack in polar waters. For instance 560km from the ice
edge at Weddell Sea observations of breakup of an ice pack due
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to a series of wave packets of approximately 1m in amplitude and
18s inperiod have been reported [16] (also see [17] for a similar
event). Three dimensional effect is believed to play a role for
waves to travel so far from the ice edge and wave energy of high
concentrations is believed to be responsible for the ice breaking.
The characteristics and phenomena are in accordance to dromion
structures.

Since the presentation of Davey-Stewartson equation, con-
siderable work has been done in the study of its solutions. How-
ever, the analytic dromions known so far are only limited to
Davey-Stewartson I equation which governs the propagation of
nonlinear wave packets in the limit of long waves on water dom-
inated by surface tension. We have recently proposed a numer-
ical algorithm that can obtain dromion solutions for the elliptic-
hyperbolic subfamily of DS equations [1]. In the Euler equations
associated with nonlinear waves propagating on ice-covered wa-
ter, inertia of ice sheet is usually neglected in the dynamic bound-
ary condition in the former studies [1,15]. Here we show that the
effect of the inertia on the shape, speed and direction of prop-
agation of a dromion can be significant. We derive the gov-
erning equation for nonlinear wave packets propagating on ice-
covered water including the inertia of ice into account. By ap-
plying the scheme proposed in [1] we find dromions numerically
in a variety of depths much larger than that of capillary-gravity
waves. The methods employed here can be simply extended
to study hydroelastic dromions on water bounded by an elastic
plate, e.g., large floating airports and bridges in ocean, associ-
ated with which kinds of wave body interaction problems have
been studied [18–20].

Governing Equations
We consider the propagation of wave packets on ice-covered

water of depthh. Flow is assumed to be incompressible, invis-
cid and irrotational. A Cartesian coordinate system is defined
such that x-y plane rests on the interface of ice and water surface
and z-axis points upward. Applying linear plate equation for thin
plate with small deflection to form the dynamic boundary condi-
tion, we have the following governing equations:

φxx+φyy+φzz= 0, −h< z< η (1a)

φz = ηt +φxηx+φyηy, z= η (1b)

φt +
1
2
(φ2

x +φ2
y +φ2

z )+gη +H0∇4η +R0ηtt = 0, z= η (1c)

φz = 0, z=−h (1d)

where,φ is the velocity potential;η is the wave elevation;λ is
the typical wave length;∇4 = ∂xxxx+2∂xxyy+ ∂yyyy is the bihar-
monic operator;H0 = EL3/12(1− ν2)ρ in which E is Young’s
modulus,L is the thickness of ice sheet,ν is the Poisson’s ra-
tio of ice, ρ is the density of water;R0 = ρI L/ρ in which ρI is

the density of the ice. Note that in the governing equations sur-
face tension is neglected for the fact that its effect is trivial for
waves on water of depth larger than a small boundary value(for
capillary-gravity waves, the limit is less than 5mm). The results
presented here are capable of recovering those from Davey and
Stewartson [2] by neglecting terms related to ice.

We reset the origin on the bottom and define such transfor-
mations that all the variables are made dimensionless:

φ ∗ =
h

aλ
√

gh
φ , t∗ =

√
gh

λ
t, x∗ =

x
λ

y∗ =
y
λ
, z∗ =

z+h
h

, η∗ =
1
a

η

Dropping asterisks we get:

φzz+δ 2(φxx+φyy) = 0, 0≤ z≤ 1+ εη (2a)

φz = δ 2(ηt + εφxηx+ εφyηy), z= 1+ εη (2b)

φt +
1
2

ε(
1

δ 2 φ2
z +φ2

x +φ2
y )+η +H∇4η +Rηtt = 0, z= 1+ εη

(2c)

φz = 0, z= 0 (2d)

where,

H =
H0

gλ 4 , R=
R0h
λ 2 , δ =

h
λ
, ε =

a
h

(3)

Assuming O(ε) ≪ 1, we are able to apply perturbation
method to the problem and have the following perturbation ex-
pansions forη andφ :

φ =
∞

∑
n=0

εnφn, η =
∞

∑
n=0

εnηn

To study phase velocity and group velocity, such new vari-
ables as follows are further defined:

ξ = x−cpt, ζ = ε(x−cgt), Y = εy, τ = ε2t

where,cp is the phase velocity andcg is the group velocity.
Since only harmonic waves are of interest to us, we writeηn

andφn as summations of harmonic modes:

ηn =
n+1

∑
m=0

AnmEm+c.c., φn =
n+1

∑
m=0

FnmEm+c.c. (4)
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where,c.c. is the complex conjugate to makeηn andφn real;

E = exp(ikξ ), Fnm= Fnm(ζ ,τ ,Y,z), Anm= Anm(ζ ,τ ,Y)

n= 1,2, . . ., in which k is the wave number.
The governing equations in the newly defined variables be-

come:

φzz+δ 2(φξ ξ +2εφξ ζ + ε2φζ ζ

+ε2φYY) = 0, 0≤ z≤ 1+ εη (5a)

φz = δ 2[ε2ητ − εcgηζ −cpηξ + ε(φξ + εφζ )(ηξ + εηζ )

+ε3φYηY], z= 1+ εη (5b)

ε2φτ − εcgφζ −cpφξ +
1
2

ε [
1

δ 2 φ2
z +(φξ + εφζ )

2+ ε2φ2
Y]+η

=−H(ηξ ξ ξ ξ +4εηξ ξ ξ ζ +6ε2ηξ ξ ζ ζ +2ε2ηξ ξYY)

−R(−ε2cpητξ + ε2c2
gηζ ζ + εcgcpηξ ζ − ε2cpητξ + εcgcpηξ ζ

+c2
pηξ ξ ), z= 1+ εη (5c)

φz = 0, z= 0 (5d)

We get problems in different orders ofε by expanding (5b)
and (5c) about the mean water surface(z= 1) in Taylor series and
collecting terms according to the order of the samll numberε.

Leading order (ε0) problem
Collection of terms of orderε0 in the governing equation

gives:

φ0zz+δ 2φ0ξ ξ = 0, 0≤ z≤ 1+ εη (6a)

φ0z =−δ 2cpη0ξ , z= 1 (6b)

−cpφ0ξ +η0+Hη0ξ ξ ξ ξ +Rc2
pη0ξ ξ = 0, z= 1 (6c)

φz = 0, z= 0 (6d)

Substitution of (4) into the above equation, we get the ex-
pression for the phase velocity:

c2
p =

(1+ H̃) tanhδk

δk+ R̃tanhδk

where,

H̃ = Hk4, R̃= Rk2 (7)

From the relation of phase velocity and frequencyω = kcp,
we have the dispersion relation:

ω2 =
k2(1+ H̃) tanhδk

δk+ R̃tanhδk

where,ω is angular frequency.
Note that in (4),φ0 = f0(ζ ,Y,τ)+F01(z,ζ ,Y,τ)E+ c.c. in

which f0(ζ ,Y,τ) is real and only a function ofζ , τ andY. It
accounts for the potential of the underlying mean flow. In the
expression ofη , we setA00 equal to zero so that the first approx-
imation to this problem gives purely harmonic surface wave. We
denoteA01 asA0 for simplicity hereafter.

First order (ε1) problem
Similarly expansion of (5) about the mean water surfacez=

0 and collection of terms ofO(ε) yield:

φ1zz+δ 2φ1ξ ξ +2δ 2φ0ξ ζ = 0, 0≤ z≤ 1+ εη (8a)

φ1z+η0φ0zz−δ 2(−cgη0ζ −cpη1ξ +φ0ξ η0ξ ) = 0, z= 1 (8b)

−cpη0φ0ξz+
1
2

φ2
0ξ −cgφ0ζ −cpφ1ξ +η1+

1
2δ 2 φ2

0z

+Hη1ξ ξ ξ ξ +4Hη0ξ ξ ξ ζ +Rc2
pη1ξ ξ +2Rcgcpη0ξ ζ = 0,

z= 1 (8c)

φz = 0, z= 0 (8d)

Substitution of (4) gives the expression for group velocity:

cg = cp
2δ 2k2(1+ H̃)+δk(1+5H̃)sinh2δk+8R̃H̃ sinh2 δk

2(δk+ R̃tanhδk)(1+ H̃)sinh2δk
(9)

Second order (ε2) problem
Continuing to collect terms ofO(ε2) from the expanded

governing equation we have:

φ2zz+δ 2φ2ξ ξ +2δ 2φ1ξ ζ +δ 2φ0ζ ζ +δ 2φ0YY = 0,

0≤ z≤ 1+ εη (10a)

φ2z+η0φ1zz+η1φ0zz+
1
2

η2
0φ0zzz−δ 2[η0τ −cgη1ζ −cpη2ξ

+φ0ξ (η1ξ +η0ζ )+η0ξ (φ0ζ +φ1ξ +η0φ0ξz)] = 0,

z= 1 (10b)

φ0ξ φ1ξ +φ0ξ φ0ζ +
1

δ 2 η0φ0zφ0zz+
1

δ 2 φ0zφ1z−
3
2

δ 2cpη0ξ φ0ξ
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+η0φ0ξ φ0ξz−cgη0φ0ζz−cpη0φ1ξz−cpη1φ0ξz−
1
2

cpη2
0φ0ξzz

+
3
2

δ 2η0η2
0ξ −cgφ1ζ −cpφ2ξ +φ0τ +η2+Hη2ξ ξ ξ ξ +6Hη0ξ ξ ζ ζ

+4Hη1ξ ξ ξ ζ +2Hη0ξ ξYY+
3
2

δ 2Hη0ξ ξ ξ ξ η2
0ξ +

3
2

Rc2
pδ 2η0ξ ξ η2

0ξ

+2Rcgcpη1ξ ζ −2Rcpη0τξ +Rc2
gη0ζ ζ +Rc2

pη2ξ ξ = 0,

z= 1 (10c)

φz = 0, z= 0 (10d)

By substitution of (4) and manipulation of related equa-
tions, we obtain Davey-Stewartson equations for flexural gravity
waves:

(1−c2
g) f0ζ ζ + f0YY =− 1

σ2 [2δkcpσ +(δ 2k2c2
pcg)(1−σ2)]|A0|2ζ

(11a)

2iωA0τ +ωω ′′A0ζ ζ +cpcgA0YY = 2k2cp[1+

δ 2k2cpcg(1−σ2)−2R̃σ2

2σ(δk+ R̃σ)
]A0 f0ζ +

k3δ
2σ

ΓA0|A0|2 (11b)

where, if we defineσ = tanhδk, thenqΓ= p in which,

q= (R̃σ +δk)3[(R̃σ +δk)(−3+12H̃)+δk(1+ H̃)(3−σ2)]

p= a+bσ +c(1−σ2)+d(1−σ2)σ +e(1−σ2)2

+ f (1−σ2)2σ +g(1−σ2)3

a= (52H̃2+44H̃ −8)δ 4k4+(48H̃2+36H̃ −12)R̃2δ 2k2

b= (100H̃2+80H̃ −20)R̃δ 3k3

c= (−104H̃ +8−112H̃2)δ 4k4+(36−144H̃2−108H̃)R̃2δ 2k2

d = (32−176H̃ −208H̃2)R̃δ 3k3

e= (−42H̃ −63H̃2−28H̃3−7)δ 4k4+(72H̃ −24+96H̃2)R̃2δ 2k2

f = (−30H̃ −3−24H̃3−51H̃2)R̃δ 3k3

g= (−2H̃3−2−6H̃2−6H̃)δ 4k4

The expression of (11) is shown to conform to the form of general
Davey-Stewartson equation.

Numerical Scheme
Many researchers have conducted numerical simulations to

DS equations. For example, finite difference method(Crank-
Nicolson scheme) is applied to elliptic-hyperbolic Davey-
Stewartson equations in [21]. The scheme is tested on DSI

with exact analytical dromion solutions and is shown to be ca-
pable of solving initial value problem associated with DS equa-
tions. But not much is addressed on what kind of initial data
leads to dromion solutions. Split step Fourier method is applied
to elliptic-hyperbolic and hyperbolic-elliptic Davey-Stewartson
equations in [22]. They test the numerical scheme on DSII with
exact analytic lump solution and on DSI with analytic one and 2
by 2 dromion solutions. However, since the scheme starts with
the existing analytical solutions for DSI and DSII, the application
of the numerical scheme to find dromions for other DS equations
is limited. The numerical scheme employed here to get dromion
solutions is first proposed in [1].
(11) can be further simplified to:

iA0τ +λA0ζ ζ +µA0YY = (ν1|A0|2+ν2 f0ζ )A0 (13a)

α f0ζ ζ + f0YY =−β |A0|2ζ (13b)

where,

λ =
ω ′′

2
, µ =

cg

2k
=

ω ′

2k
≥ 0

ν1 =
k3δ
4σω

Γ, ν2 = k[1+
δ 2k2cpcg(1−σ2)−2R̃σ2

2σ(δk+ R̃σ)
]≥ 0

α = 1−c2
g, β =

1
σ2 [2δkcpσ +(δ 2k2c2

pcg)(1−σ2)]≥ 0

Here we only consider elliptic-hyperbolic DS equations, i.e.
α < 0, λ > 0. If we definev = − f0ζ +g|A0|2, g = −β/α, we
get:

iA0τ +λA0ζ ζ +µA0YY+(−ν1−ν2g)A0|A0|2+ν2vA0 = 0
(14a)

−αvζ ζ −vYY+g|A0|2YY = 0 (14b)

On the condition thatν2g+ ν1 > 0, the following transfor-
mations can be introduced:

ζ ∗ =

√

− 1
µα

ζ , Y∗ =

√

1
µ

Y, u∗ =
√

ν2g+ν1

2
A0, v∗ =−ν2

2
v

Dropping asteriskswe get:

iuτ + puζ ζ +uYY−4u|u|2−2uv= 0 (15a)

vζ ζ −vYY−4q|u|2YY = 0 (15b)
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where,

p=− λ
µα

> 0, q=
gν2

2(ν2g+ν1)
> 0

According to its properties, a dromion is supposed to be sta-
tionary if put in a moving frame of reference with a constant
speed the same as the dromion’s. Here we re-write the equa-
tions (15) under such a moving reference frame. Its velocity
vector iscζ~i + cY~j (~i and~j are the unit vectors along x and y
directions respectively) which is independent of time. We de-
fine ζ ∗ = ζ − cζ τ andY∗ =Y− cYτ and assumeu(ζ ∗,Y∗,τ) =
u∗(ζ ∗,Y∗)exp(iατ). Dropping asterisks, (15) becomes:

−αu− icζ uζ − icYuY + puζ ζ +uYY−4u|u|2−2uv= 0 (16a)

vζ ζ −vYY−4q|u|2YY = 0 (16b)

in which ζ , Y are the only variables involved now.

As follows is the basic idea of this numerical scheme. The
u, v are written asu= u0+up andv= v0+vp in whichu0 andv0

are the one-dromion solutions of DSI andup, vp are deviations
of dromion solutions of interest to DSI. Nowup and vp are
the only unknowns in (16). We substitute them into (16) and
apply an iterative scheme until satisfactory results are obtained.
Specifically, for (16a), pseudo-spectral method is applied to
calculate the derivatives with respect toζ and Y; for (16b),
we consider one of the two independent spatial variables as
pseudo-time and apply the fourth-order Runge-Kutta method for
time integration. Onceup, vp are obtained, theu0 andv0 are kept
being updated until desired precision is obtained. We monitor
the residue of these two equations by directly substituting the
numerical results into (16).

Results and Discussions
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FIGURE 1: A dromionsolution of flexural gravity wave to (15)
for the casekh= 10, R̂= 0.009 andĤ = 4.3× 10−4.(a) Wave
amplitude|u|. (b) Negative velocity of the mean flow−v. (c),(d)
Real and imaginary parts of the complex amplitudeu.

From dimension analysis, we have four dimensionless
groups related to the problem:kh, L/h, ρI/ρ , EL3/12(1−
/ν2)ρgh4(hereν is considered to be constant rather than vari-
able). For simplicity, we define such notations:

Ĥ =
EL3

12(1−ν2)ρgh4 , R̂=
ρI L
ρh

whereR̂stands for the ratio of inertia of ice sheet to that of water
column underneath. All the coefficients in (13) can be expressed
in these four independent dimensionless variables. We present a
specific case thatkh= 10, Ĥ = 4.3× 10−4. Corresponding to
(16), p = 1.50 andq = 0.083(while p = q = 1 corresponds to
DSI). Error set to 1×10−8, we get the dromion solutions as in
Figure 1. The velocity vector of the moving reference frame is
5.81~i + 6.59~j and α = 28.88. A variety of water depths have
been tested to admit such dromions.

To understand the role of inertia plays on dromions, we
continue to plot the comparison of the solutions with and with-
out taking into inertia into account( by settinĝR= 0). Letting
kh= 10, Ĥ = 4.3× 10−4 we plot the two coefficients p and q
separately for the two cases in Figure 2 for comparison. It is
shown that the values of p and q in (15), when the inertia is ne-
glected, can be much smaller. AsR̂grows, the difference tends to
increase. For the case thatk= 0.05m−1, h= 200m andL = 2m,
we compare the differences of the central vertical sections of
dromions in the two cases.
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FIGURE 2: Comparison of coefficients p and q in (15)
with/without taking inertia into account for the casekh =
10, Ĥ = 4.3× 10−4.(a) Coefficient p vs.R̂. (b) Coefficient q
vs. R̂.
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FIGURE 3: Comparison of amplitudes of dromions with/without
taking inertiainto account by plotting their central vertical sec-
tions aty = 0, the values of the specified parameters arekh=
10, Ĥ = 4.3×10−4.

It is shown in Figure 3 that when the inertia of ice sheet is
neglected in the computation the error of the wave amplitude is
approximately 100%. For̂R= 0, we get the velocity vector of
propagation 5.33~i + 6.50~j which is 8.4% smaller in amplitude
from the case with effect of inertia.
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FIGURE 4: Plots in real physical space for the caseε = 0.1,
k= 0.05m−1, h= 200m andL = 2m; values of physical param-
eters of ice used are: the density of iceρI = 0.92×103kg/m3,
gravitational accelerationg = 9.8m/s2, Young’s modulusE =
9×109pa, Poisson’s ratioν = 0.33. (a) Amplitude of the wave
packet. (b)Wave profile att = 0.

Since all the variables we deal with in the numerical scheme
are transformed from the dimensional ones which have clearer
physical meaning. By applying the inverse transform, we get the
actual amplitude of the wave elevation and the velocity of the
mean flow in real physical space as in Figure 4 and Figure 5.

As is mentioned previously, dromions can propagate with
constant speeds without changing their forms. We are interested
in if dromions on ice-covered water can preserve this property
when slightly being disturbed by the ocean environment, i.e., if
they can propagate with stability. A similar study for the sta-
bility of dromion solutions to DSI can be found in [23]. Their
numerical results show that dromions to DSI are stable when
subject to small perturbations. Here computer errors are set as
the initial perturbations. we first check the conserved quantity
I =

∫ |u|2dζdY.Two time steps 5×10−5 and 2.5×10−5 are used
to monitor the convergence of the results. As is shown in Figure
6, the fluctuation|I − I0|/I0 whereI0 is the initial value, after 105

steps, keeps at order of 10−6. For the fluctuation of the maxi-
mum amplitude|u−u0|/|u0| whereu0 is the initial complex am-
plitude, the error keeps around 10−6 as well. These differences
are acceptable given that the computer errors are inevitable. Thus
we can conclude that these dromions possess Lyapunov stability.
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FIGURE 5: Velocity of the mean flow for the caseε = 0.1,
k = 0.05m−1, h = 200m andL = 2m. (a) X-component of the
velocity. (b) Y-component of the velocity. (c) Resultant velocity.

(a)

0 0.5 1 1.5 2 2.5
10

−10

10
−8

10
−6

t

|I
−

I 0
|/
I 0

 

 

δt = 5× e−5

δt = 2.5× e−5

(b)

0 1 2 3 4 5
10

−10

10
−8

10
−6

t

|u
−

u
0
|/
|u

0
|

 

 

δt = 5× e−5

δt = 2.5× e−5

FIGURE 6: Stability studyon the dromion. (a) Evolution of
quantity |I − I0|/I0 over time, whereI =

∫ |u|2dζdY. (b) Evo-
lution of quantity|u−u0|/|u0| over time, whereu0 is the initial
amplitude of the dromion.

Conclusions
Here we derive the governing equations for nonlinear wave

packets on ice-covered water by multiple-scale perturbation

technique and show that they conform to the form of Davey-
Stewartson system. Through an iterative numerical scheme com-
bined with pseudo-spectral method and Runge-Kutta method we
obtain dromions for flexural gravity waves in much larger depth
than gravity-capillary waves. We show inertia of ice sheet plays
a significant role on the dromions and negligence of it can cause
a large error. By applying perturbations at order of computer
error, we prove that the dromions of flexural gravity waves can
propagate with stability.
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