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ABSTRACT decays exponentially fast in all horizontal directions except

We have recently shown [1] that fully-localized three- along a ray. Later it was shown that governing equations for
dimensional wave envelopes (so-called dromions) can exist and two-dimensional weakly nonlinear envelope of monochromatic
propagate on the surface of ice-covered waters. Here we show waves reduces to the Nonlinear Schroedinger equation [5] and
that the inertia of the ice can play an important role in the size, it too admits soliton solutions. Extension of KdV equation to
direction and speed of propagation of these structures. We use three-dimension is obtained by Kadomtsev and Petviashivili [6]
multiple-scale perturbation technique to derive governing equa- (long waves and slow transverse dependence) and that of NLS
tions for the weakly nonlinear envelope of monochromatic waves equation by Davey and Stewartson [2].

propagating over the ice-covered seas. We show that the govern- On water dominated by surface tension(i.e., Bond number>
ing equations simplify to a coupled set of one equation for the 1 /3y the KP equation (KPI) admits three dimensional fully lo-
envelope amplitude and one equation for the underlying mean -gjized structures named lumps [7, 8] and the long wave limit
current. This set of nonlinear equations can be further simpli- 4t pg equation (DSI) is found to admit dromions [9-12]. Both
fied to fall in the category of Davey-Stewartson equations [2]. lumps and dromions are capable of propagating on water with

We then use a numerical scheme initialized with the analytical ¢onstant speeds without changing their forms. The difference is
dromion solution of DSI (i.e. shallow-water and surface-tension that dromions decay exponentially in space while lumps alge-
dominated regimes of Davey-Stewartson equation) to look for praically. Also dromions form at the intersection of line-solitary
dromion solution of our equations. Dromions can travel over mean-flow tracks and therefore their underlying structure to the
long distances and can transport mass, momentum and energyjeading order extends to infinity or finite boundaries.

from the ice-edge deep into the solid ice-cover that can result

in the ice cracking/breaking and also in posing dangers to ice- In polar area, waves can propagate on the surface of ice-
breaker ships. covered waters. For these waves to exist bending of the ice

must be taken into account and therefore these waves are often
calledflexural-gravitywaves. Many studies have been done on
flexural gravity waves based on two dimensional model or/and
INTRODUCTION linear wave theory [13—15]. Due to the flexural rigidity of ice,
Two-dimensional solitary waves were first observed by John dromions can exist on water of depth much larger than that for
Scott Russell [3,4]. About half a century later Korteweg and capillary-gravity waves [1]. This study is motivated by observa-
de Veries derived the nonlinear governing equations and found tions of (relatively) large amplitude localized waves deep inside
analytical form of 2D solitary waves. The profile of a two- the icepack in polar waters. For instance 560km from the ice
dimensional solitary wave- similar to the one Russell observed- edge at Weddell Sea observations of breakup of an ice pack due
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to a series of wave packets of approximately 1m in amplitude and the density of the ice. Note that in the governing equations sur-

18s inperiod have been reported [16] (also see [17] for a similar face tension is neglected for the fact that its effect is trivial for

event). Three dimensional effect is believed to play a role for waves on water of depth larger than a small boundary value(for

waves to travel so far from the ice edge and wave energy of high capillary-gravity waves, the limit is less than 5mm). The results

concentrations is believed to be responsible for the ice breaking. presented here are capable of recovering those from Davey and

The characteristics and phenomena are in accordance to dromiorStewartson [2] by neglecting terms related to ice.

structures. We reset the origin on the bottom and define such transfor-
Since the presentation of Davey-Stewartson equation, con- mations that all the variables are made dimensionless:

siderable work has been done in the study of its solutions. How-

ever, the analytic dromions known so far are only limited to X h . Voh
Davey-Stewartson | equation which governs the propagation of ¢ = a/\\/gT(p’ = Tt’ X = X

nonlinear wave packets in the limit of long waves on water dom- 7+h 1

inated by surface tension. We have recently proposed a numer- y = AX’ zZ = o n“==n

ical algorithm that can obtain dromion solutions for the elliptic- a

hyperbolic subfamily of DS equations [1]. In the Euler equations . . _

associated with nonlinear waves propagating on ice-covered wa- Propping asterisks we get:

ter, inertia of ice sheet is usually neglected in the dynamic bound-

ary condition in the former studies [1,15]. Here we show that the @rz+ 52((B<x—|- @y)=0,0<z<1+en (2a)
effect of the inertia on the shape, speed and direction of prop- _ 52 — ob
agation of a dromion can be significant. We derive the gov- @ =0 (M + EQIIx+E@My), Z=1+€n (2b)
erning equatioq for npnlinear_ wave pa.cker propagating on ice- @+ }S(iquzz+ ¢3+%2) I N4+HO*N +RNg=0,z=1+en
covered water including the inertia of ice into account. By ap- 290

plying the scheme proposed in [1] we find dromions numerically (2c)
in a variety of depths much larger than that of capillary-gravity ®=0,z=0 (2d)

waves. The methods employed here can be simply extended
to study hydroelastic dromions on water bounded by an elastic W
plate, e.g., large floating airports and bridges in ocean, associ-
ated with which kinds of wave body interaction problems have
been studied [18-20]. H Ho R— &h, 5=

here,
9 €= (3)

Governing Equations _ _ AssumingO(g) < 1, we are able to apply perturbation
We consider the propagation of wave packets on ice-covered method to the problem and have the following perturbation ex-
water of deptth. Flow is assumed to be incompressible, invis- pansjons for) and¢:

cid and irrotational. A Cartesian coordinate system is defined

such that x-y plane rests on the interface of ice and water surface w o

and z-axis points upward. Applying linear plate equation for thin Q= Z}g”%7 n= Z}g"nn
plate with small deflection to form the dynamic boundary condi- n= n=

tion, we have the following governing equations:

To study phase velocity and group velocity, such new vari-
G+ @y+ @z=0, —h<z<n (1a) ables as follows are further defined:

Q=N+ GNx+ @y, Z=1 (1b)

1 E=x—cpt, { =e(x—cgt), Y =gy, T =’
@+ 5 (@ + &+ @) +9n+HoD'n +Rone =0, =0 (Lc) ’ et

®=0,z=-h (1d) where,c;, is the phase velocity angy is the group velocity.
Since only harmonic waves are of interest to us, we write
where, @ is the velocity potentialn is the wave elevation) is andg, as summations of harmonic modes:
the typical wave lengthi]* = dyyux+ 20xxyy+ Oyyyy is the bihar-
monic operatorHy = EL3/12(1— v?)p in which E is Young'’s il Nl
modulus,L is the thickness of ice sheat,is the Poisson’s ra- Nn= z AmE™+c.c., ¢h = Z FamE™4-c.cC. 4
tio of ice, p is the density of waterfo = piL/p in which p; is m=0 m=0
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where,c.c. is the complex conjugate to makg andg, real;
E=exp(ik), Fom=Fm({,T,Y,2), Aam= Am({, T,Y)

n=1.2,...,inwhich k is the wave number.
The governing equations in the newly defined variables be-
come:

Qoo+ 0% (e + 26, + €24,
+€%@y)=0,0<z<1+en
@, = 8°[€°N: — £CyN; — CpMe + £(Ps + £ (Ng +€N¢)
+e3rny], z=1+en

(5a)

(5b)
2 1 1 2 2 2 .2
E°Qr — ECyq; —Cp%+§5[§(l’z + (@ +e@)"+ @] +n
= —H(Negee +4€Neceg +66°Nescc +26°Neyy)
—R(—€%Cplyg +£°Chn¢ ¢ +ECgCpMeg — £2CpMlre +ECCpNey
+C,2;,I’]gg), z=1+¢€n (5¢)
®=0,2=0 (5d)

We get problems in different orders efoy expanding (5b)
and (5c¢) about the mean water surface(k) in Taylor series and
collecting terms according to the order of the samll nunzher

Leading order (¢°) problem
Collection of terms of ordee® in the governing equation
gives:

@ozzt O°oge =0,0<z< 1+en (6a)

@or = —0°Cplgs, z=1 (6b)

—CpGs +No+ Hl’]offff + R(%f]ogf =0,z=1 (6C)
@=0,z=0 (6d)

Substitution of (4) into the above equation, we get the ex-
pression for the phase velocity:

» (1+H)tanhdk

P dk+ Rtanhdk
where,
A

= HK* R=RIK (7)

From the relation of phase velocity and frequeigy= kcp,
we have the dispersion relation:

, k(14 H)tanhok
W =———"=="-""
Sk + Rtanhdk

where,w is angular frequency.

Note that in (4),@ = fo(Z,Y, 1) +Fo1(z,{,Y,T)E +c.c.in
which fo(,Y, ) is real and only a function of, T andY. It
accounts for the potential of the underlying mean flow. In the
expression of], we setAgp equal to zero so that the first approx-
imation to this problem gives purely harmonic surface wave. We
denoteAy; asAy for simplicity hereafter.

First order (¢1) problem

Similarly expansion of (5) about the mean water surface
0 and collection of terms dD(¢) yield:

Puzzt+ O%Pues +20%@e; =0,0<z<1+en  (8a)
@12+ NoQozz— 8%(—CgMNoz — CpMig + e Mog) =0, z=1 (8b)
1 1
—CpMothez + quég — Cghy — CpPus + M1+ 2—524&

+HN1gges +4HNosg ¢ +RGN1ge +2ReCpNogz = O,
z=1
©®=0,z=0

(8¢)
(8d)

Substitution of (4) gives the expression for group velocity:

26%k?(1+ H) + 8k(1+ 5H) sinh 25k + 8RH sint? 5k
2(3k+ Rtanhdk) (1+ H) sinh 25k

C

©)
Second order (¢2) problem

Continuing to collect terms 00(g?) from the expanded
governing equation we have:

Worrt+ 8% Pogs +28°Prs7 + 82 Qzz + O2vy =0,

0<z<1l+¢n (10a)
1
Gz + NoPrzz+ N1@Pozz+ érlgqbzzz— 52[’70r —Cgl1z — Cphas

+@e (N1 + Noz) + Nog (Goz + e + Nodosz)] = O,

z=1 (10b)

1 1 3,
e Prs + Pos oz + ﬁrlo%z%zz—f' 52 0Pz — 55 CpMoe tos
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1
Jrl’]o(,lbg %Ez - CQUO%ZZ - Cpnoq)lfz - Cpnl%fz - Ecpng%fzz

=8°NoNGs — Ca®iz — Co®og + @or + N2+ Hipegeg +6HNog ¢

3 3
+4H Mgz +2HMog vy + 56" HNogeee i + 5RG Noee N
+2RCp1g; — 2RGNore + RGN0z +RGMags =0
z=1
©=0,z=0

(10c)
(10d)

By substitution of (4) and manipulation of related equa-
tions, we obtain Davey-Stewartson equations for flexural gravity
waves:

1
(1~ cg)fogg + fovy = — 52120kep0 + (8%K*cheq) (1— 02)]| Aol
(11a)
2iwAor + Ww" Agz 7 + CpCgPoyy = 2KCp[1+
5%k2cpcy(1— 0?) — 2Ra? k3 )

where, if we definer = tanhdk, thengl” = p in which,

= (Ro + 8k)3[(Ro + 0k)(—3+12H) + dk(1+ H)(3— 0?)]
p=a+bo+c(l-0%) +d(1-0?)0+e(l-0?)?
+f(1-0%)20+9(1-0?)
a= (5242 + 44 — 8)5%k* + (482 4-36H — 12)R°5°K?
b = (100H2 + 80H — 20)R5°%k®
= (—104H +8— 112H2)5%* + (36— 14412 —
d = (32— 1764 — 2084?)R5%K*
= (—42H — 6312 — 2813 — 7)5%* + (72H — 24+ 96H2)R?5%K?
f = (—30H — 3— 24H3 - 51H?)R3%K®
g=(—2H3—-2—-6H2—6H)5%*

q

108H)R252K?

The expression of (11) is shown to conform to the form of general
Davey-Stewartson equation.

Numerical Scheme

Many researchers have conducted numerical simulations to
DS equations. For example, finite difference method(Crank-
Nicolson scheme) is applied to elliptic-hyperbolic Davey-
Stewartson equations in [21]. The scheme is tested on DSI

with exact analytical dromion solutions and is shown to be ca-
pable of solving initial value problem associated with DS equa-
tions. But not much is addressed on what kind of initial data
leads to dromion solutions. Split step Fourier method is applied
to elliptic-hyperbolic and hyperbolic-elliptic Davey-Stewartson
equations in [22]. They test the numerical scheme on DSII with
exact analytic lump solution and on DSI with analytic one and 2
by 2 dromion solutions. However, since the scheme starts with
the existing analytical solutions for DSI and DSII, the application
of the numerical scheme to find dromions for other DS equations
is limited. The numerical scheme employed here to get dromion
solutions is first proposed in [1].

(11) can be further simplified to:

iAoz +A Aoz + HAovy = (Vi|Ao|? + Va2 for ) A (13a)
aforz + fory = —B\Ao@ (13b)
where,
w// Cg w/
= >
A= H= = %20
k36 52k2cpCy(1— 02) — 2R0?
—— T, vw=Kk1 P < >0
17 0w 0 V2 1+ 20(0k+Ro) I
a=1-& B= %[zakcpm (62Pcg) (1— 07)] > 0

Here we only consider elliptic-hyperbolic DS equations, i.e.
a <0,A > 0. If we definev = —fo; +g|Af?, g= —B/a, we
get:

iAor +AAgzz + HAovy + (—V1 — V20)Ao|Ag|? + VovAg = 0
(14a)

—avgz — Wy +glAolgy =0 (14b)

On the condition that,g+ v1 > 0, the following transfor-
mations can be introduced:

* [_i * E * VV29+V _
Z_ IJGZ7Y_\/;Y7 A07\fk_ 2

Dropping asteriskae get:

iUr + pUzz + Uyy — 4ujuf — 2uv=0
V¢ — Wy —4qlufy =0

(15a)
(15b)
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where, Results and Discussions

(@ (b)

gv2
P= a7 97 2vag )
(© 0 @)
0.2 0.15 o1 A 0.1
— 0.1 /g
\?;0'1 0.05 T o0 0
According to its properties, a dromion is supposed to be sta- S o o ~

tionary if put in a moving frame of reference with a constant :
speed the same as the dromion’s. Here we re-write the equa- 2 g 2 ¢ 2 ¢ 2 ¢

tions (15) under such a moving reference frame. Its velocity

vector iSCZ?+ (,\(r (T and r are the unit vectors along x and y  FIGURE 1: A dromioqsolution of er>A<uraI gravity wave to (15)
directions respectively) which is independent of time. We de- for the casekh = 10, R=0.009 andH = 4.3x 10 *.(a) Wave
fine {* = { —c;T andY* =Y —cyT and assume({*,Y*, 1) = amplitude|u|. (b) Negative velocity of the mean flowv. (c),(d)
u*({*,Y*)exp(iaT). Dropping asterisks, (15) becomes: Real and imaginary parts of the complex amplitude

From dimension analysis, we have four dimensionless
groups related to the problemkh, L/h, pi/p, EL3/12(1—
P . - - B /v?)pght(herev is considered to be constant rather than vari-
au—icgug —iCyUy + Pugg + vy —4uuf —2uv=0 (16a) able). For simplicity, we define such notations:
Ve — Wy —4qlufy =0 (16b)

ELC o aL

H= 12(1—v2)pgh*’ R ph

whereR stands for the ratio of inertia of ice sheet to that of water
column underneath. All the coefficients in (13) can be expressed
in these four independent dimensionless variables. We present a
specific case thath= 10, H = 4.3x 104. Corresponding to

As follows is the basic idea of this numerical scheme. The (16), p = 1.50 andg = 0.083(whilep = g = 1 corresponds to

in which Z,Y are the only variables involved now.

u, Vv are written asi = up + Up andv = Vg + vp in which ug andvg DSI). Error set to 108, we get the dromion solutions as in
are the one-dromion solutions of DSI angl v, are deviations FiguIe 1. Tbe velocity vector of the moving reference frame is
of dromion solutions of interest to DSI. Now, and v, are 5.81 +6.59] anda = 28.88. A variety of water depths have
the only unknowns in (16). We substitute them into (16) and been tested to admit such dromions.

apply an iterative scheme until satisfactory results are obtained. To understand the role of inertia plays on dromions, we
Specifically, for (16a), pseudo-spectral method is applied to continue to plot the comparison of the solutions with and with-
calculate the derivatives with respect foandY; for (16b), out taking into inertia into account( by settiy= 0). Letting

we consider one of the two independent spatial variables as kh= 10, H = 4.3x 10~* we plot the two coefficients p and q

pseudo-time and apply the fourth-order Runge-Kutta method for separately for the two cases in Figure 2 for comparison. It is

time integration. Onceyp, v are obtained, they andvp are kept shown that the values of p and q in (15), when the inertia is ne-

being updated until desired precision is obtained. We monitor glected, can be much smaller. Rgrows, the difference tends to

the residue of these two equations by directly substituting the increase. For the case that 0.05nT1, h=200m and. = 2m,

numerical results into (16). we compare the differences of the central vertical sections of
dromions in the two cases.
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0.4~ -R#0
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0.3f
0.2t
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0.02 0.04 0.06 0.08
R
FIGURE 2: Comparison ofcoefficients p and q in (15)

with/without taking inertia into account for the casdh =
10, H = 4.3x 10-%.(a) Coefficient p vs.R. (b) Coefficient g
vs.R.

0.4f — R =0.009]]
N ——R=0
0.3}
=02
0.1
0 I I
-3 3

FIGURE 3: Comparison of amplitudes of dromions with/without
taking inertiainto account by plotting their central vertical sec-
tions aty = 0, the values of the specified parameterskdre-
10, H =4.3x 104,

It is shown in Figure 3 that when the inertia of ice sheet is
neglected in the computation the error of the wave amplitude is
approximately 100%. FoR = 0, we get the velocity vector of
propagation 5.33+ 6.50] which is 8.4% smaller in amplitude
from the case with effect of inertia.

@

0.7

(b)

-100

-50 0
x(m)

50 100

FIGURE 4: Plots inreal physical space for the case= 0.1,
k=0.05nT1, h=200m and. = 2m; values of physical param-
eters of ice used are: the density of jope= 0.92x 10%kg/n?,
gravitational acceleratiog = 9.8m/¢, Young’s modulusE =

9 x 10°pa, Poisson’s ratio = 0.33. (a) Amplitude of the wave
packet. (b)Wave profile at= 0.

Since all the variables we deal with in the numerical scheme
are transformed from the dimensional ones which have clearer
physical meaning. By applying the inverse transform, we get the
actual amplitude of the wave elevation and the velocity of the
mean flow in real physical space as in Figure 4 and Figure 5.

As is mentioned previously, dromions can propagate with
constant speeds without changing their forms. We are interested
in if dromions on ice-covered water can preserve this property
when slightly being disturbed by the ocean environment, i.e., if
they can propagate with stability. A similar study for the sta-
bility of dromion solutions to DSI can be found in [23]. Their
numerical results show that dromions to DSI are stable when
subject to small perturbations. Here computer errors are set as
the initial perturbations. we first check the conserved quantity
| = [|u[>dZdY.Two time steps % 10~° and 2.5x 10~° are used
to monitor the convergence of the results. As is shown in Figure
6, the fluctuationl —lg|/lp wherelg is the initial value, after 19
steps, keeps at order of 10 For the fluctuation of the maxi-
mum amplitudgu — up|/|up| whereup is the initial complex am-
plitude, the error keeps around0as well. These differences
are acceptable given that the computer errors are inevitable. Thus
we can conclude that these dromions possess Lyapunov stability.
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(1]

FIGURE 5: Velocity of the mean flow for the case = 0.1, 2]
k= 0.05n1, h=200m andL = 2m. (a) X-component of the
velocity. (b) Y-component of the velocity. (¢) Resultant velocity.

(3]

(4]

(a) 1076
- [5]
-~
< 10°
|
— (6]
—5t=5x¢e° i
ool 0t=25xe” | |
0 0.5 1 . 1.5 2 2.5 [7]
(b) 10_6
5 (8]
~
210
S
| [9]
= ,
—dt=5xe” .
ool =25x e | |
0 1 2 , 3 4 5 [10]

FIGURE 6: Stability studyon the dromion. (a) Evolution of
quantity || — Ig|/lo over time, wherd = [ |u?dZdY. (b) Evo-
lution of quantity|u— up|/|up| over time, whereyg is the initial
amplitude of the dromion.

[11]

[12]

Conclusions
Here we derive the governing equations for nonlinear wave [13]
packets on ice-covered water by multiple-scale perturbation

) " technique and show that they conform to the form of Davey-
Stewartson system. Through an iterative numerical scheme com-
bined with pseudo-spectral method and Runge-Kutta method we

o obtain dromions for flexural gravity waves in much larger depth

o than gravity-capillary waves. We show inertia of ice sheet plays

a significant role on the dromions and negligence of it can cause

a large error. By applying perturbations at order of computer

error, we prove that the dromions of flexural gravity waves can

propagate with stability.
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