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ABSTRACT broad wavenumber band eventually leading to loss of order an

Higher order (quartet) Bragg resonance of water waves chaotic motion of water surface.
by bottom undulations and its effect on the evolution of ncea
wave spectrum, particularly over continental shelves étatal
zones, are considered. Higher order Bragg resonance can pro INTRODUCTION
vide a viable mechanism for distribution of (initially camdid) We consider the higher order resonant interactions of sur
energy across the spectrum. Contrary to classical Bragg-res face waves travelling over bottom undulations. The probiem
nances (Class | and 1) where the resonant wave has to have the similar to the second order case, in that waves are modified, i
same frequency as the incident wave, Class Il (quartetpBra  exchange energy, as they travel over and interact with themie
resonance of three free waves and a bottom topography compo-form bottom topography. In higher order, however, unlike th

nent allow participant waves to have different frequenciés second order, Bragg resonance can occur between waves of d
particular interest here are higher-order resonances tleatd to ferent frequencies. This fact suggests the possibilityesfega-
infragravity wave generation as a result of interaction efular tion of resonant waves with (much) higher and lower freqiesic

sea waves with bottom undulations (of the same order of wave- than the initial waves. Furthermore, when an incident wese-t
length as the primary waves), and, long/medium surface wave eling over the rippled region satisfies the higher order Braan-
generation by nonlinear interaction between short surfaeges dition the resonant wave can be a refleatedransmitted wave.
and medium wavelength bottom undulations. These mechanism Bragg resonance can affect the development of the wave spe
can accelerate the rate by which energy is damped by the bot- trumin the coastal regions and continental shelves (e2).3;;4)
tom friction. The second mechanism also provides a potaitia , modify the shore-parallel sandbars (e.g. 5), result in wewe
ternative mechanism for explaining microseismic noiseoled formations that are of concern to, for example, ocean vesicl
in shallow waters. We further consider the oblique higher or moored in shallow basins (e.g. 6) and affect the micro-seism
der Bragg resonance. Although for Class I, oblique resoeanc spectrum (e.g. 7) in places where bottom topography variasi

is less important than normal incidence, it is shown hereilvia appreciable.

lustrative examples and direct simulations that there drerg The second order interaction of surface waves with botton
oblique Class Il and Ill Bragg cases. Inclusion of higher erd undulations has been studied extensively, owing to its impo
interactions paves a path for the energy transfer to highett a  tance in the formation of near-shore sandbars and the éwolut

lower frequencies of an initially narrow band spectrum. &ng of ocean wave-field in littoral zones. Regular perturbatioal-
multiple (exact/near) such resonant interactions can ltgauhe ysis has been invoked to find the amplitude growth rate of the
generation of multiple new transmitted/reflected wavesfitia resonantwave at and near the resonance (8). The resul$ afthi
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proach becomes unbounded when the number of bottom ripplesspectrum in shallow waters with a rough bottom.

increases indefinitely. To overcome this, multiple-scalelysis Problem definition is given i1, followed by a discussion
offers a formulation that derives a uniformly convergertion on the Bragg resonance condition and geometric construatio
for the interacting wave components (1). A similar result ca the second and the third orderg8. In §3 a selection of relevant
be obtained by extending the mild slope equation to inclhde t examples are presented and discussed. It is shown, for éxamp

effect of fast bottom undulations (9). By including higrarder that regular sea waves can generate infragravity waves @s a f
interactions, in (10) second-order Bragg resonance isrgéned sult of high order interaction with typical near shore saargdb

to include third-order quartet resonant interactions ofegaand The case of oblique resonance is much richer in terms of nurnr
bottom ripples, but only equi-frequency cases are consitler bers and types of possible resonances. For example it isrshov

Ocean generated noise contributes to the mid-frequency re- that starting from a single monochromatic incident wavghbr
gion of micro-seismic spectrum (7). The spectrum has two order resonance can resultin an accurate symmetric thresndi
clearly distinguishable peaks, at periods of abRatl4 sec (pri- sional standing wave in a finite time. This may have impliwagi
mary, 12-18 sec) anp=7 sec (secondary, 6-9 sec), whose source in three dimensional wave generation in towing tanks wite on
is yet unclear(11). Primary micro-seisms were recordeaghn wave generating paddle.

German coast and north Swedish station (Umea) coming from

the entire north Norwegian coast, and secondary at northern

Scandinavia, Norwegian coast, North Channel and the Bristo 1 Problem Formulation

Channel (11). Ocean generated micro-seisms were originall We consider a potential flow with incident wave(s) propagat-
attributed to ocean swell, and a better understanding was pr ing over non-uniform bottom topography, subject to the ¢ond
vided when (12) showed how nonlinear wave-wave resonance tion of relatively mild surface/interface/bottom wave gés. Of
can generate waves of half period. However, Observations of basicinterests here are the conditions involving the iigvave
(11) suggest that the secondary micro-seismic wavefielabtis n  and bottom topology wavenumbers for a given water depth fo
due to wave-wave interactions near/at the storm centerisbut ~ Which (generalized) Bragg resonant interactions obtain.
possibly due to the interaction of incident waves éwhl geo- We define a cartesian coordinate system witxis on the
metrical structures It is further conjectured that the transfer of ~mean free surface azehxis positive upward. We consider a fluid
ocean storm energy to infragravity waves facilitates theewa  of depthh and densityp resting on a rippled horizontal bottom
bottom interactions, resulting in stronger micro-seissignals given byz= —h+ny, whereny, is the elevation of the bottom
from certain geographical locations (13; 14). undulation measured from the mean bottom depth. We assun

Higher order wave interactions in the ocean and the genera- that the fluid is homogeneous, incompressible, immisciblé a
tion of new frequency resonant wave are of importance, &so, inviscid so that the fluid motion is irrotational. The effeadt
the loading conditions of moored ships. Loading and oftliog surface tension is neglected. The flow is described by a ifgloc
subject a ship to a regular change of its weight and depthetth dr ~ potential,@(x,zt). The exact nonlinear equations read:
ratio, resulting in the variation of its natural frequeneydahy-
drodynamic pr?perties (1f5f; 16). Therefore eveln low :m@d_a’tu 029+ @,=0 —h+np<z<ns (1L.1a)
waves at specific range of frequencies may result in a dnastic
tion of the ship, as is a concern for moored LNG carriers in-sha @90+ (0 +1/209-0+1/2¢,0)

2 _ _
low basins where such motions are synonymous with the strong (109 +¢5) =0 Z="Ns (1.1b)
internal sloshing if the tank is not fully filled (6). BottonoT Ns+@+1/2(|0@P+@) =0 z=ns (1.1c)
pography is already known to be a determining factor for the O-0Onp— @, =0 z=—-h+np(1.1d)

direction of dominant waves in such basins, and here we show
its potential effect in disturbing the wave field by genargties-
onant waves.

Although the formulation of higher order Bragg resonance
has been obtained in principle (e.g. 3), or has been givernres
special cases (10), resonance possibilities have bot bedwed,
out. Here we show a more general geometric construction for
different classes of Bragg resonance and via illustratkeare
ples supported by direct simulations show how higher oregr r
onance can result in appreciable unexpected waves. Trmgtsre O @ 3
may have direct implications in a safer design of offshorecst ¢=ep +e@ +0(). (1.2)
tures, more accurate estimations of the work condition afired
ships in shallow basins, and better understanding of oce&e w  Substituting (1.2) into (1.1), expanding the quantitiestmnfree

whered = (0y,dy), Ns(x,t) is the elevations of the free-surface
andg is the gravity acceleration.

For small surface waves over a mildly varying bottom to-
pographyn,, we expand the velocity potentiap)(in perturba-
tion series with respect to a small parametérat measures the
wave/bottom steepnesses which are assumed, for simpliaity
be of the same order:
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surface and bottom in Taylor series with respect to the etisme
mean positions, different order equations are obtaineddby ¢
lecting terms at each order= 1,2, .... In a regular perturbation
approach, at each order, a system of linear equations (With a
possibly lower order nonlinearities moved to the right-thaite)
are solved successively to higher order starting fromd.

At m=1, the set of governing equations is homogeneous, and
the eigen solution representing a free propagating wavebean
written as

(p<1) = Acogkx —ut), (1.3)

wherew andk represent the frequency and wavenumber of the
wave respectively, and satisfy the dispersion relation:

D (k,w) = w? — gktanhkh= 0, (1.4)

wherek = |K|.

2 Bragg resonances

Consider a right-going incident wave of frequenay
wavenumbek and amplitudea propagating over a rippled bot-
tom with the elevation given by

Nb(X) = dsin(kp - X) (2.5)

whered andky, are respectively the amplitude and wavenumber
of the bottom undulations. At the second order 2), if K = kp
andw satisfy the dispersion relation, i.e.,

b

where the subscriptdenotes the resonant wave, the interaction
term is secular and the second-order interaction beconses re
nant. As a result, a free propagating wave of wavenunkber
and frequencw is generated. The initial growth of the resonant
wave amplitudey, is given by:

@(kr,(ﬂ) :0

Ky — k -+ Kp (2.6)

adadt 2.7)

for a long uniformly-rippled bottom. Under this conditiai2.7)
shows that the amplitude of the generated wave grows indefi-
nitely over time. Equation (2.6) is called the class | Braggdi-

tion. Figure 1.a shows a goemetric construction of classd tr
Without loss of generality we assume that the incident wave

3

moves along positive-axis. Now a bottom topography with
wavenumbeky, can resonate another free surface wayewith

the same frequency as that of the incident wave, if it cormect
the end ofk, arrow to another point on the circle with radius
r = |k|. This circle is in fact a horizontal cross section of three
dimensional cone-shape dispersion relation at a giveuéecy

w. This geometric construction in fact gives the same resutifa
(10). Class | Bragg resonance has been studied extensiegly:
ular perturbation technique (8), multiple scales (1), nsildpe
equation (9), numerical validation (10) and with a more cmp
cated incident wave field (17).

The resonance interactions occur also at third-oroes3]
involving quartets of propagating/bottom modes. Theseragl
to two broad types: one consisting of two free wave and twc
bottom ripple components; and the other three wave compgsnen
and one bottom component. The resonance associated with t
former/latter quartet wave-bottom interaction is den@gdlass
[I/11l Bragg resonance.

To illustrate the class Il Bragg resonance condition, we
consider a bottom elevation which is given by the superposi
tion of two ripple components of wavenumbedgg and ky,.
Upon carrying out the perturbation analysis to the third or-
der it turns out that the bottom forcing contains terms pro-
portional to sif(k £ 2kpy)x — wt], sin(k + 2kp2)x — wt], and
sin(k £ kpy £ kp2)x — wit]. Class Il Bragg resonance occurs
whenever the wavenumbler- 2k, or k = 2k, or k &= kpg £ Kkpo
and the frequencyp satisfy the dispersion relation (1.4). Thus,
in general form, the class Il Bragg resonance condition @n b
expressed as:

The class Il resonance condition (2.8) is identical to tles<ll
resonance condition (2.6)kf in (2.6) is replaced by the super- or
sub-harmonic combination of the two bottom ripple compdsen
kp1 = kpo. Class Il resonance is thus a direct extension of class
resonance to the third order. Similarly the geometric aqoiesion

of class Il is similar to class | witlky, vector being replaced by
kpl+kp2, and is shown in figure 1-b.

In class Il Bragg resonance, the resonant quartet is comn
posed of three travelling waves and one bottom ripple compo
nent. To obtain this resonance condition, we consider thergé
case involving two incident waves of wavenumbérsandky,
and frequenciegy; andwyp. Without loss of generality, we as-
sumek; > |ko| > 0. Starting with the linear solution for the two
free wave components and carrying out the perturbatiorysisal
to the third order, the inhomogeneous terms contain exjoress
proportional to sif(2k1 £ Kp)Xx— 2mt], sin[(2k2 & kp)X— 2upt],
and sifi(ky k2 +kp)X— (w1 £ 0p)t]. If the combined wavenum-
ber and frequency in any of these forcing terms satisfy tke di

D(kr,w) :0

Ky = k & Kpg + Kop (2.8)
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Figure 1.

Geometric construction of the a) class | triad and b) class Il
quartet Bragg resonant waves. Wave Kj is assumed to move along the
positive x-axis.

persion relation, the associated wave-bottom interatimomes

resonant and a third free wave component is generated by the

resonance. The condition for class Ill Bragg resonance ean b
written in the following general form:

(2.9)

kr =kiEtkotkp, wr=0w1twy

D (kl' ) (.k)r) = O }
in which k; andwy represent the wavenumber and frequency of
the resonant generated wave.

Due to the involvement of three free propagating waves,

In atwo dimensional configuration, higher order (classBhagg
resonance can contribute to resonant waves with possiloly co
parable amplitude to the original (incident) waves. In tihesp
ence of regular seabed undulations, ¥10— 100)m (see e.g.
18), co-propagating short surface waves can resonatearesjut
face waves for example, and counter-propagating regular su
face waves can resonate infragravity waves. We furtheridens
oblique cases when the possibility of resonance cases i mu
higher. It is shown that higher order resonance, via a bibaim
topography, can distribute the energy of a monochromatie in
dent surface wave equally in four waves (including the ianid
wave itself) resulting in a symmetric three dimensionahdiag
wave on the water surface. Two examples of class Ill Bragg res
onance are also discussed where a subharmonic long cress-we
is generated when two co-propagating surface waves trawvel c
an oblique undulatory region, and, when two co-propagatimg
face waves travel over a perpendicular bottom topograpim fo
two (superharmonic) oblique surface waves which are symenet
with respect to the direction of incident waves, and hencefo
a moving egg-rack pattern on top of initial incident wavesi- N
merical simulations are performed by a Higher Order Spkctra
(HOS) method (see 10).

3.1 Two dimensional higher order Bragg resonance

Two dimensional class Ill Bragg resonance, when inciden
waves have non-equal frequencies, offers a viable meahdars
the generation of a variety of new frequencies that oridyréo

combinations of wave components in class Il resonance are Notexistin the spectrum. Here we consider two cases of this k
more complicated than those in class Il resonance. Graphica @nd show that, via numerical simulations, the amplitudenef t

constructions similar to those of figure 1 can be formed fassl
Il Bragg resonance in a general finite depth case for a) gubcr
ical (i.e. wy=w1 — wyp) and b) supercritical (i.e.=w1 + W)

resonant generated wave can be comparable to the initid&inic
waves.
Case 1. Resonance of a subharmonic regular surface wa

cases, which for the interest of space are not shown here. In aby two co-moving short surface waves traveling over a regula

subcritical case, for a giveky andk, (without loss of generality
we assumé; = kii andk; = |k1] > |k2|), a bottom componetkt,
that connects the end of the arr&gw-+ k, to the resonance circle
forms a quartet class Il Bragg resonance. The resonarae sr
a circle centered at the origin and with radius k, = |k,| where
k: is the solution to the equatiam(k;, wy ) = 0 with W=y — wy.
The resonance circle never crosseskfiside circle (with radius
r = |kz|), i.e. wx < w — wy. Note that sinc®y, andtt+ 6y, form
the same bottom topography, thg < 1 always chosen for the
definition of the bottom wavenumber angle. In the case of su-
perharmonic class Il Bragg resonance, the resonances agcl
always outsidék, circle. A similar discussion as for subcritical
case applies here for the geometric construction.

3 Results
In this section a number of representative higher order@rag
resonance is considered and potential applications acastied.

4

bottom undulation. To illustrate this case consider, faraple,
A1=10 m and\»=15 m co-propagating surface waves in a shallow
basin ofh=5 meters, carpeted with a topography of dominant
wavelength ohp=44 m, which can excite &, =86 meter surface
wave.

To numerically show the strength of this resonance, conside
along 2D basin such that a)/ox = 0. To simulate wave inter-
action over such a basin, we consider a finite length of thsgnba
L = 20\, and apply periodic boundary condition at both ends
atx = 0 andx = 20A;. Initial wave amplitudes are respectively
a3 = 14 cm anday=7 cm for wave 1 and 2. To nondimension-
alize we take a length scale bf = 274m such that the taken
portion is mapped to & x < 21t Time scale is chosen such that
gT¢/Lo=1.

Figure 3-a shows numerical simulation of this case for a time
period of 0< t/Tp < 450. Atthe cost of decrease in the amplitude
of wavek;, the amplitudes of resonant walkeand waveks ini-
tially increase with time. The resonance growth is stronaues

Copyright © 2009 by ASME



k

Figure 2. Schematic of the dispersion relationship for a. Infragravity res-
onant wave generation as a quarter resonance between two regular sur-
face waves and a bottom undulation with a wavenumber of the same order
as that of surface waves (almost half), and, b. regular surface wave gen-
eration as a result of quartet Bragg resonance between two very short
surface waves and a monochromatic bottom undulation of regular wave
length.

amp/a1

0 20 40 60

t/T0

80 100 120

Figure 3. Evolution of amplitudes of incident and resonant waves in two-
dimensional Class lll Bragg resonance: a) Example 1 and b) Example
2.

3.2 Symmetric three-dimensional standing wave gen-
eration by class Il
A symmetric three-dimensional standing wave is generate
when two perpendicular standing wave with no ®phase dif-

such that the amplitude of the resonant wave becomes compara grence are superimposed on top of each other. Here we shc

ble to the initial surface waves. If the simulation runs fong
enough time, the direction of energy propagation reversés a
the energy moves back, from resonant wkvand waveks, to
the wavek;. Modulation in time has to continue should there be
no other interactions. However, due to the other leadigguri
order exact/near resonances, energy disperses over itteuspe
after a while.

Case 2. Resonance of an infragravity surface wave by two
heading regular surface waves traveling over a regulaoiyott
undulation. For exampl@1=80 m andA,=132 m oppositely-
propagating surface waves in a shallow basirheb0 meters
carpeted with a topography of dominant wavelength\gt54
m can excite &,=672 meter surface wave.

Similar to case 1, we pick a long basin such thadx = 0
with lengthL = 20A,. Initial wave amplitudes are respectively
a; =1 manday=2 m. Nondimensionalizing scales drg= 2140
m andTp=0.485 sec. Figure 3-b shows the modulation of the
initial wave and resonant wave amplitudes. The weaker drowt
in this case (compared to the case in figure 3-a) is partiaiy d
the assumption of 10 times deeper water. Nevertheless tre sh
amplitude resonance generated infragravity wave with éneg
of T ~ 30 seconds is long enough to be able to resonate LNG
tankers.

that class Il Bragg resonance can be used to generate antalm
perfect such wave starting with only one monochromaticient
surface wavék = ki.

For this purpose, assume a bottom topography with twc
componentkp;=(k,0) andkpp=(0,k). The first bottom topog-
raphy kp; at the third order, when being counted two times,
reflects a part of the energy of incident wake and forms a
two dimensional standing wave with crests parallel toyHais.
However,k; — kpy + kp2=(0,k)=k;" satisfies the dispersion re-
lation (i.e. »(w, k") = 0), and hence is a resonant wave and
will be formed. Interestingly, a similar wave but with oppo-
site direction of propagation is also a resonant wave ingigs
tem: k; =k1 — kp1 — kpp=(0,—K). Due to the symmetry the en-
ergy sinks from the incident wave equally into wakgsandk;
which will from a standing wave with crests parallei@xis. If
the resonance is strong enough, and the phase matchingpcct
at a certain time the amplitude of both sets of standing waxes
equal, and a symmetric three dimensional standing waveaappe
on the surface.

To numerically show this possibility, we consider a
monochromatic incident surface wave of normalized wavenum
berk=(5,0) with a bottom composed kf;=(5,0) andkp2=(0, 5)
in a shallow basin of normalized depth= 0.1257. Numeri-
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0 10 20 30 40 50 60
t/T,

Figure 4. Growth of the amplitude of the resonant standing wave (solid
line) and the decay in the amplitude of the incident wave (dash-lines) as
the standing waves are being formed.

cal simulation shows (figure 4) that after a time abiot45Ty,
whereTy is the period of the incident wave, the amplitudes of
x-parallel andy-parallel standing waves are close. The graph is
generated by measuring the (spatial) Fourier componeritseof
wave field. If waves are progressive, the correspondingi€our
amplitude stays constant as long as the amplitude is cdnstan
If standing, then the corresponding Fourier amplitudelizges.
The solid line in figure 4 is a push (Hilbert transform) to theve
corresponds to the resonant wave. The dash-lines are upger a
lower pushes for the incident wave. Note that at the begmnin
the incident wave is a simple monochromatic progressiveeyav
hence no oscillation is seen in the Fourier amplitude. Ag¢he between waves of different frequencies
flected wave forms (i.e. standing wave starts to form), theieo q '

amplitude starts to oscillate and lower dash-line curvetbds To simulate this problem, we take normalized variables
introduced. Lo=24 m for length and=1.57 sec for time. Numbers of points

f alongx- andy-axis areNDX=128 andNDY=64 respectively, and
ot/ T1=32 whereT; is the period of the firstincident surface wave.
Figure 6 compares the surface pattern in a linear simulatitm
the simulation in which nonlinearities are taken into actdor-
der of nonlinearity in HOS is set tM=4). Cross-waves with
wavenumbek; = 5 are clearly seen, perpendicular to the crests
of the initial incident waves. Figure 7 shows the measured am
plitude as a function of time.

Superharmonic class Ill Bragg resonance happens when tt

Figure 5. A symmetric standing wave pattern formation as a result of
third order Bragg resonance of a monochromatic incident wave with two
bottom topography components.

basin ofh = 2 meters depth. If the topography wavelength is
Ap=75 m and its wavenumber makégs = 35 degree with the
positivex-axis, a relatively long (subharmonic) surface wave of
Ar=30 m propagating perpendicularly to the initial surfacees
will be generated as a result of oblique class Il Bragg resce

The three dimensional standing wave pattern at the peak o
the amplitude of the resonant wave (ifex 45Tp) is shown in
figure 5. This mechanism can be used in experimentations in
towing tanks with one paddle to form symmetric (or diffejent
standing waves and offers another potential mechanismhéor t
generation of standing waves in shallow basins that may help
better understanding of the micro-seismic spectrum.

3.3 Oblique class Il Bragg resonance frequency of the resonant wave is the sum of frequencies-of in
Oblique class Il Bragg resonance can significantly affect cident waves. Consider two incident waves of wavenumber

the evolution of ocean spectrum, and contribute to the geioer ki,ko and a topography with the wavenumbey. Assume

of new frequency waves. This is of importance in many prattic  k;" =k + k2 + kp, is a resonant wave, i.ep (k;",x) = 0 where

applications including the operation of large LNG carriefs wr = w1 + wp. Now if kpL (k1 +K2), thenk; =k; + ky — kp has

shore, yet close to harbors, where the water is shallow amdsva  to be a resonant wave too. In a special case wheandk, are

are multi-directional (6). aligned, there is no preferred direction, hence energy héaet

As an illustrative example here we consider a case in which, equally distributed betweeky™ andk,” resulting in a propagat-
due to class Il Bragg resonance, a resonant wave forms with ing pattern in the direction parallel {, + k2) and a standing

its direction of propagation perpendicular to the directis the pattern in the perpendicular direction. The 3D pattern pgap
original co-propagating uni-directional incident waves. tion then looks like a moving egg-rack.
ConsiderA1=10 m andA,=18.7 m co-propagating surface As an example consider two incident wave with normalized

waves propagating along the positixexis in a very shallow wavenumber&1=(8,0) andk,=(5,0) traveling over bottom un-
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Figure 6. High order numerical simulation of waves propagating over un-
dulatory topography when class Il Bragg resonance condition is satisfied.
a. Linear simulation b. higher order simulation. Cross waves Ky=5 are ob-
served perpendicular to the direction of propagation of incident waves.

1="'""-------===:::::::::I(E?(:1-5-’C-))-\" ------------- 7
08l k,=(8,0) /
S
L06f 1
S‘_
S 04r i
&
0.2} k=(0.5) :
0
0 50 100 150 200 250 300 350 400
t/T0

Figure 7. Evolution of amplitudes of incident and resonant waves in an
oblique class Il Bragg resonance. Normalized wave numbers are shown
on the figure.

dulation with perpendicular wavenumberlgf=(0,12) in a wa-
ter of normalized depth=0.1257. In a sea of depth 10 m, these
numbers are correspond to waves with wavenumbgré00 m
andA,=62.5 m with a bottom wavelength d§=42 m. These two
incident waves and bottom component satisfy the superh@mo
class Il Bragg resonance and sirlgel (k1 +kz) a double class
[l Bragg resonance happens.

Figure 8 shows a numerical simulation of this case. Numbe
of points along- andy-axis areNDX=128 and\DY=64 respec-
tively, andot/T;=16 whereT; is the period of the first incident
surface wave. Figure 8a shows the surface pattern if nomonli
earity is taken into account whereas taking higher order4M=
nonlinearity results in the generation of relatively syablique
waves superimposed on the surface. The oblique resonaset wa
growth as a function of time is shown in figure 9 where due to
the amplitude decay of initial surface waves the new resonar
wave arises. However, the crests of the resonant obliquesvav
do not move in theg-direction. This can be seen from figure 10
where a top view of the wavefield is depicted for two relagvel
close times. With waves propagating in tkelirection clearly
observed, the crests in tlyedirection are stationary.

4 Conclusion

Higher order oblique and normal resonance interaction o
surface waves with bottom topography is considered and a nun
ber of potential application is underscored via illustratexam-
ples and direct numerical simulations. At the third ordem t
surface waves can be in resonance via two bottom componer
(Class Il Bragg resonance), or, three surface waves via ofe b
tom component (Class Il Bragg resonance). Contrary toClas
| and II, where participating waves in a triad/quartet resue
have the same frequency, in Class Il they can have diffdrent
guencies. Therefore Class Ill can offer a variety of new poss
bilities for the generation of resonant waves, hence, tiffgthe
evolution of ocean wave spectrum.

For the case of normal incidence Class Il Bragg resonanc
two examples have been studied: regular ocean wave genmerati
as a result of nonlinear interaction of two short surfaceegav
with a regular wavelength bottom undulation, and long igfea-
ity wave generation via interaction of regular wavelengitiace
waves and bottom undulations. The latter can particulaglinb
portant in the problem of resonance of LNG carriers moored ir
shallow basins near the shore.

In the case of oblique resonance, it is shown that the thirc
order Bragg resonance can generate a symmetric three dime
sional standing wave pattern from a monochromatic incident
face wave via a bi-harmonic bottom topography. Obliquesclas
Il Bragg resonance is also shown to have potentials in ftiona
of long/short surface waves oblique to the incident wavekef
incident waves arrive at the bottom undulation with appiatpr
angles.
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Figure 8. High order numerical simulation of waves propagating over
undulatory topography when class Il Bragg resonance condition is sat-
isfied. a. Linear simulation b. higher order (M=4) simulation. Oblique
waves k=(13,12) are observed due to Class Ill Bragg resonance of sur-
face waves with a perpendicular bottom undulation.

lp-mmeeeesccescemmemmmammzs=szzzzzzszzzzzgzzzzzzz=z=5]
- k=
= o8 K, (8,0)/ ,=(5,0)/ |
o 06F
£
E o4
02l kr=(13,12)
0
0 5 10 15 20 25 30
t/T0

Figure 9. Evolution of amplitudes of incident and resonant waves in an
oblique Class Il Bragg resonance. Normalized wave numbers are shown
on the figure.

Real ocean surface is composed of a spectrum of waves, ¢
is the topography. Therefore a variety of combinationsilaino
those studied in this paper, may occur resulting in an acatele
energy transfer to other frequencies. Our consideratioggest
that this energy transfer, which is solely due to nonlingacian
in fact be strong and can deform or accelerate the evolution c
the ocean spectrum; therefore it has to be carefully taken in
account for a safe offshore design particularly in shall@sibs
and near shore areas with appreciable bottom irregulgritie
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