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ABSTRACT

Higher order (quartet) Bragg resonance of water wave
by bottom undulations and its effect on the evolution of ocean
wave spectrum, particularly over continental shelves and littoral
zones, are considered. Higher order Bragg resonance can pr-
vide a viable mechanism for distribution of (initially confined)
energy across the spectrum. Contrary to classical Bragg reso-
nances (Class I and II) where the resonant wave has to have t
same frequency as the incident wave, Class III (quartet) Bragg
resonance of three free waves and a bottom topography comp
nent allow participant waves to have different frequencies. Of
particular interest here are higher-order resonances thatlead to
infragravity wave generation as a result of interaction of regular
sea waves with bottom undulations (of the same order of wav
length as the primary waves), and, long/medium surface wa
generation by nonlinear interaction between short surfacewaves
and medium wavelength bottom undulations. These mechaniss
can accelerate the rate by which energy is damped by the b
tom friction. The second mechanism also provides a potential al-
ternative mechanism for explaining microseismic noise observed
in shallow waters. We further consider the oblique higher or-
der Bragg resonance. Although for Class I, oblique resonance
is less important than normal incidence, it is shown here viail-
lustrative examples and direct simulations that there are strong
oblique Class II and III Bragg cases. Inclusion of higher order
interactions paves a path for the energy transfer to higher and
lower frequencies of an initially narrow band spectrum. Ensuing
multiple (exact/near) such resonant interactions can result in the
generation of multiple new transmitted/reflected waves that fill a
1
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broad wavenumber band eventually leading to loss of order ad
chaotic motion of water surface.

INTRODUCTION
We consider the higher order resonant interactions of s

face waves travelling over bottom undulations. The problemis
similar to the second order case, in that waves are modified, i.e.,
exchange energy, as they travel over and interact with the nonuni-
form bottom topography. In higher order, however, unlike the
second order, Bragg resonance can occur between waves of-
ferent frequencies. This fact suggests the possibility of genera-
tion of resonant waves with (much) higher and lower frequencies
than the initial waves. Furthermore, when an incident wave trav-
eling over the rippled region satisfies the higher order Bragg con-
dition the resonant wave can be a reflectedor transmitted wave.
Bragg resonance can affect the development of the wave sp
trum in the coastal regions and continental shelves (e.g. 1;2; 3; 4)
, modify the shore-parallel sandbars (e.g. 5), result in newwave
formations that are of concern to, for example, ocean vehices
moored in shallow basins (e.g. 6) and affect the micro-seismic
spectrum (e.g. 7) in places where bottom topography variation is
appreciable.

The second order interaction of surface waves with botto
undulations has been studied extensively, owing to its impr-
tance in the formation of near-shore sandbars and the evoluion
of ocean wave-field in littoral zones. Regular perturbationanal-
ysis has been invoked to find the amplitude growth rate of t
resonant wave at and near the resonance (8). The result of this ap-
Copyright c© 2009 by ASME
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proach becomes unbounded when the number of bottom ripp
increases indefinitely. To overcome this, multiple-scale analysis
offers a formulation that derives a uniformly convergent solution
for the interacting wave components (1). A similar result can
be obtained by extending the mild slope equation to includehe
effect of fast bottom undulations (9). By including higher-order
interactions, in (10) second-order Bragg resonance is generalized
to include third-order quartet resonant interactions of waves and
bottom ripples, but only equi-frequency cases are considered.

Ocean generated noise contributes to the mid-frequency
gion of micro-seismic spectrum (7). The spectrum has tw
clearly distinguishable peaks, at periods of aboutT1=14 sec (pri-
mary, 12-18 sec) andT2=7 sec (secondary, 6-9 sec), whose sour
is yet unclear(11). Primary micro-seisms were recorded at north
German coast and north Swedish station (Umea) coming fr
the entire north Norwegian coast, and secondary at north
Scandinavia, Norwegian coast, North Channel and the Brisl
Channel (11). Ocean generated micro-seisms were originy
attributed to ocean swell, and a better understanding was po-
vided when (12) showed how nonlinear wave-wave resona
can generate waves of half period. However, Observations
(11) suggest that the secondary micro-seismic wavefield isot
due to wave-wave interactions near/at the storm center, buis
possibly due to the interaction of incident waves andlocal geo-
metrical structures. It is further conjectured that the transfer o
ocean storm energy to infragravity waves facilitates the wave-
bottom interactions, resulting in stronger micro-seismicsignals
from certain geographical locations (13; 14).

Higher order wave interactions in the ocean and the gene
tion of new frequency resonant wave are of importance, alsoto
the loading conditions of moored ships. Loading and off-loading
subject a ship to a regular change of its weight and depth to daft
ratio, resulting in the variation of its natural frequency and hy-
drodynamic properties (15; 16). Therefore even low amplitude
waves at specific range of frequencies may result in a drasticmo-
tion of the ship, as is a concern for moored LNG carriers in shl-
low basins where such motions are synonymous with the stro
internal sloshing if the tank is not fully filled (6). Bottom To-
pography is already known to be a determining factor for t
direction of dominant waves in such basins, and here we sh
its potential effect in disturbing the wave field by generating res-
onant waves.

Although the formulation of higher order Bragg resonan
has been obtained in principle (e.g. 3), or has been given in some
special cases (10), resonance possibilities have bot been worked
out. Here we show a more general geometric construction
different classes of Bragg resonance and via illustrative exam-
ples supported by direct simulations show how higher order res-
onance can result in appreciable unexpected waves. These results
may have direct implications in a safer design of offshore struc-
tures, more accurate estimations of the work condition of moored
ships in shallow basins, and better understanding of ocean wave
2
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spectrum in shallow waters with a rough bottom.
Problem definition is given in§1, followed by a discussion

on the Bragg resonance condition and geometric construction at
the second and the third order in§2. In §3 a selection of relevant
examples are presented and discussed. It is shown, for examle,
that regular sea waves can generate infragravity waves as ae-
sult of high order interaction with typical near shore sandbars.
The case of oblique resonance is much richer in terms of nu
bers and types of possible resonances. For example it is shn
that starting from a single monochromatic incident wave, higher
order resonance can result in an accurate symmetric three dimen-
sional standing wave in a finite time. This may have implications
in three dimensional wave generation in towing tanks with oe
wave generating paddle.

1 Problem Formulation
We consider a potential flow with incident wave(s) propag

ing over non-uniform bottom topography, subject to the coni-
tion of relatively mild surface/interface/bottom wave slopes. Of
basic interests here are the conditions involving the incident wave
and bottom topology wavenumbers for a given water depth
which (generalized) Bragg resonant interactions obtain.

We define a cartesian coordinate system withx-axis on the
mean free surface andz-axis positive upward. We consider a flui
of depthh and densityρ resting on a rippled horizontal bottom
given byz = −h+ ηb whereηb is the elevation of the bottom
undulation measured from the mean bottom depth. We ass
that the fluid is homogeneous, incompressible, immiscible and
inviscid so that the fluid motion is irrotational. The effectof
surface tension is neglected. The flow is described by a veloity
potential,φ(x,z,t). The exact nonlinear equations read:

∇2φ+ φzz= 0 −h+ ηb < z< ηs (1.1a)

φtt +gφz+(∂t +1/2 ∇ φ ·∇+1/2 φz∂z)

(|∇φ|2 + φ2
z) = 0 z= ηs (1.1b)

gηs+ φt +1/2 (|∇φ|2 + φ2
z) = 0 z= ηs (1.1c)

∇φ ·∇ηb−φz = 0 z= −h+ ηb (1.1d)

where∇ = (∂x,∂y), ηs(x,t) is the elevations of the free-surfac
andg is the gravity acceleration.

For small surface waves over a mildly varying bottom t
pographyηb, we expand the velocity potential (φ) in perturba-
tion series with respect to a small parameterε that measures the
wave/bottom steepnesses which are assumed, for simplicity, to
be of the same order:

φ = εφ
(1)

+ ε2φ
(2)

+O(ε3) . (1.2)

Substituting (1.2) into (1.1), expanding the quantities onthe free
Copyright c© 2009 by ASME
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surface and bottom in Taylor series with respect to the respective
mean positions, different order equations are obtained by col-
lecting terms at each orderm= 1,2, . . .. In a regular perturbation
approach, at each order, a system of linear equations (withll
possibly lower order nonlinearities moved to the right-hand side)
are solved successively to higher order starting fromm=1.

At m=1, the set of governing equations is homogeneous, a
the eigen solution representing a free propagating wave canbe
written as

φ
(1)

= Acos(kx−ωt), (1.3)

whereω andk represent the frequency and wavenumber of th
wave respectively, and satisfy the dispersion relation:

D (k,ω) ≡ ω2−gktanhkh= 0, (1.4)

wherek = |k|.

2 Bragg resonances
Consider a right-going incident wave of frequencyω,

wavenumberk and amplitudea propagating over a rippled bot-
tom with the elevation given by

ηb(x) = dsin(kb ·x) (2.5)

whered andkb are respectively the amplitude and wavenumb
of the bottom undulations. At the second order (m= 2), if k±kb

andω satisfy the dispersion relation, i.e.,

D (kr ,ω) = 0
kr = k±kb

}

, (2.6)

where the subscriptr denotes the resonant wave, the interactio
term is secular and the second-order interaction becomes reso-
nant. As a result, a free propagating wave of wavenumberkr

and frequencyω is generated. The initial growth of the resonan
wave amplitudear is given by:

ar ∝ a d t (2.7)

for a long uniformly-rippled bottom. Under this condition,(2.7)
shows that the amplitude of the generated wave grows inde
nitely over time. Equation (2.6) is called the class I Bragg condi-
tion. Figure 1.a shows a goemetric construction of class I triad.
Without loss of generality we assume that the incident wavek1
3
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moves along positivex-axis. Now a bottom topography with
wavenumberkb can resonate another free surface wavekr , with
the same frequency as that of the incident wave, if it connes
the end ofkr arrow to another point on the circle with radius
r = |k|. This circle is in fact a horizontal cross section of thre
dimensional cone-shape dispersion relation at a given frequency
ω. This geometric construction in fact gives the same result as of
(10). Class I Bragg resonance has been studied extensively:reg-
ular perturbation technique (8), multiple scales (1), mildslope
equation (9), numerical validation (10) and with a more compli-
cated incident wave field (17).

The resonance interactions occur also at third-order (m=3)
involving quartets of propagating/bottom modes. These belong
to two broad types: one consisting of two free wave and tw
bottom ripple components; and the other three wave componets
and one bottom component. The resonance associated with
former/latter quartet wave-bottom interaction is denotedas class
II/III Bragg resonance.

To illustrate the class II Bragg resonance condition, w
consider a bottom elevation which is given by the superpo
tion of two ripple components of wavenumberskb1 and kb2.
Upon carrying out the perturbation analysis to the third o
der it turns out that the bottom forcing contains terms pro
portional to sin[(k ± 2kb1)x− ωt], sin[(k ± 2kb2)x− ωt], and
sin[(k ± kb1 ± kb2)x− ωt]. Class II Bragg resonance occurs
whenever the wavenumberk−2kb1 or k±2kb2 or k±kb1±kb2

and the frequencyω satisfy the dispersion relation (1.4). Thus
in general form, the class II Bragg resonance condition cane
expressed as:

D (kr ,ω) = 0
kr = k±kb1±kb2

}

. (2.8)

The class II resonance condition (2.8) is identical to the class I
resonance condition (2.6) ifkb in (2.6) is replaced by the super- or
sub-harmonic combination of the two bottom ripple components
kb1±kb2. Class II resonance is thus a direct extension of clas
resonance to the third order. Similarly the geometric construction
of class II is similar to class I withkb vector being replaced by
kb1±kb2, and is shown in figure 1-b.

In class III Bragg resonance, the resonant quartet is co
posed of three travelling waves and one bottom ripple comp
nent. To obtain this resonance condition, we consider the general
case involving two incident waves of wavenumbers,k1 andk2,
and frequencies,ω1 andω2. Without loss of generality, we as-
sumek1 > |k2| > 0. Starting with the linear solution for the two
free wave components and carrying out the perturbation analysis
to the third order, the inhomogeneous terms contain expressions
proportional to sin[(2k1±kb)x−2ω1t], sin[(2k2±kb)x−2ω2t],
and sin[(k1±k2±kb)x−(ω1±ω2)t]. If the combined wavenum-
ber and frequency in any of these forcing terms satisfy the ds-
Copyright c© 2009 by ASME
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Figure 1. Geometric construction of the a) class I triad and b) class II

quartet Bragg resonant waves. Wave k1 is assumed to move along the

positive x-axis.

persion relation, the associated wave-bottom interactionbecomes
resonant and a third free wave component is generated by
resonance. The condition for class III Bragg resonance cane
written in the following general form:

D (kr ,ωr) = 0
kr = k1±k2±kb, ωr = ω1±ω2

}

(2.9)

in which kr andωr represent the wavenumber and frequency
the resonant generated wave.

Due to the involvement of three free propagating wave
combinations of wave components in class III resonance
more complicated than those in class II resonance. Graphl
constructions similar to those of figure 1 can be formed for class
III Bragg resonance in a general finite depth case for a) subcit-
ical (i.e. ωr=ω1 − ω2) and b) supercritical (i.e.ωr=ω1 + ω2)
cases, which for the interest of space are not shown here. I
subcritical case, for a givenk1 andk2 (without loss of generality
we assumek1 = k1î andk1 = |k1|> |k2|), a bottom componentkb

that connects the end of the arrowk1+kb to the resonance circle
forms a quartet class III Bragg resonance. The resonance circle is
a circle centered at the origin and with radiusr = kr = |kr | where
kr is the solution to the equationD (kr ,ωr) = 0 with ωr=ω1−ω2.
The resonance circle never crosses thek2 side circle (with radius
r = |k2|), i.e. ωr < ω1−ω2. Note that sinceθb andπ + θb form
the same bottom topography, theθb < π always chosen for the
definition of the bottom wavenumber angle. In the case of s
perharmonic class III Bragg resonance, the resonance circle is
always outsidek2 circle. A similar discussion as for subcritica
case applies here for the geometric construction.

3 Results
In this section a number of representative higher order Brag

resonance is considered and potential applications are discussed.
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In a two dimensional configuration, higher order (class III)Bragg
resonance can contribute to resonant waves with possibly com-
parable amplitude to the original (incident) waves. In the pres-
ence of regular seabed undulations, i.e.O(10−100)m (see e.g.
18), co-propagating short surface waves can resonate regular sur-
face waves for example, and counter-propagating regular sr-
face waves can resonate infragravity waves. We further consider
oblique cases when the possibility of resonance cases is muh
higher. It is shown that higher order resonance, via a biharmonic
topography, can distribute the energy of a monochromatic inci-
dent surface wave equally in four waves (including the incident
wave itself) resulting in a symmetric three dimensional standing
wave on the water surface. Two examples of class III Bragg re-
onance are also discussed where a subharmonic long cross-wve
is generated when two co-propagating surface waves traveln
an oblique undulatory region, and, when two co-propagatingsur-
face waves travel over a perpendicular bottom topography form
two (superharmonic) oblique surface waves which are symmetric
with respect to the direction of incident waves, and hence form
a moving egg-rack pattern on top of initial incident waves. Nu-
merical simulations are performed by a Higher Order Spectrl
(HOS) method (see 10).

3.1 Two dimensional higher order Bragg resonance
Two dimensional class III Bragg resonance, when inciden

waves have non-equal frequencies, offers a viable mechanism for
the generation of a variety of new frequencies that originally do
not exist in the spectrum. Here we consider two cases of this kind
and show that, via numerical simulations, the amplitude of the
resonant generated wave can be comparable to the initial incident
waves.

Case 1. Resonance of a subharmonic regular surface wa
by two co-moving short surface waves traveling over a regular
bottom undulation. To illustrate this case consider, for example,
λ1=10 m andλ2=15 m co-propagating surface waves in a shallow
basin ofh=5 meters, carpeted with a topography of dominan
wavelength ofλb=44 m, which can excite aλr=86 meter surface
wave.

To numerically show the strength of this resonance, considr
a long 2D basin such that all∂/∂x = 0. To simulate wave inter-
action over such a basin, we consider a finite length of this basin
L = 20λr and apply periodic boundary condition at both end
at x = 0 andx = 20λr . Initial wave amplitudes are respectively
a1 = 14 cm anda2=7 cm for wave 1 and 2. To nondimension-
alize we take a length scale ofL0 = 274m such that the taken
portion is mapped to 0< x̄ < 2π. Time scale is chosen such that
gT2

0 /L0=1.
Figure 3-a shows numerical simulation of this case for a tim

period of 0< t/T0 < 450. At the cost of decrease in the amplitude
of wavek1, the amplitudes of resonant wavekr and wavek2 ini-
tially increase with time. The resonance growth is strong enough
Copyright c© 2009 by ASME
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Figure 2. Schematic of the dispersion relationship for a. Infragravity res-

onant wave generation as a quarter resonance between two regular sur-

face waves and a bottom undulation with a wavenumber of the same order

as that of surface waves (almost half), and, b. regular surface wave gen-

eration as a result of quartet Bragg resonance between two very short

surface waves and a monochromatic bottom undulation of regular wave

length.

such that the amplitude of the resonant wave becomes compa-
ble to the initial surface waves. If the simulation runs for long
enough time, the direction of energy propagation reverses and
the energy moves back, from resonant wavekr and wavek2, to
the wavek1. Modulation in time has to continue should there be
no other interactions. However, due to the other leading/higher
order exact/near resonances, energy disperses over the spectrum
after a while.

Case 2. Resonance of an infragravity surface wave by tw
heading regular surface waves traveling over a regular bottom
undulation. For exampleλ1=80 m andλ2=132 m oppositely-
propagating surface waves in a shallow basin ofh=50 meters
carpeted with a topography of dominant wavelength ofλb=54
m can excite aλr=672 meter surface wave.

Similar to case 1, we pick a long basin such that∂/∂x = 0
with lengthL = 20λr . Initial wave amplitudes are respectively
a1 = 1 m anda2=2 m. Nondimensionalizing scales areL0 = 2140
m andT0=0.485 sec. Figure 3-b shows the modulation of th
initial wave and resonant wave amplitudes. The weaker growh
in this case (compared to the case in figure 3-a) is partially due
the assumption of 10 times deeper water. Nevertheless the short
amplitude resonance generated infragravity wave with the period
of T ≈ 30 seconds is long enough to be able to resonate LN
tankers.
5
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Figure 3. Evolution of amplitudes of incident and resonant waves in two-

dimensional Class III Bragg resonance: a) Example 1 and b) Example

2.

3.2 Symmetric three-dimensional standing wave gen-
eration by class II

A symmetric three-dimensional standing wave is generat
when two perpendicular standing wave with no (orπ) phase dif-
ference are superimposed on top of each other. Here we sh
that class II Bragg resonance can be used to generate an almt
perfect such wave starting with only one monochromatic incident
surface wavek = kî.

For this purpose, assume a bottom topography with tw
componentskb1=(k,0) andkb2=(0,k). The first bottom topog-
raphy kb1 at the third order, when being counted two times
reflects a part of the energy of incident wavek1 and forms a
two dimensional standing wave with crests parallel to they-axis.
However,k1 − kb1 + kb2=(0,k)=k+

r satisfies the dispersion re-
lation (i.e. D (ω,k+

r ) = 0), and hence is a resonant wave an
will be formed. Interestingly, a similar wave but with oppo-
site direction of propagation is also a resonant wave in thissys-
tem: k−

r =k1−kb1−kb2=(0,−k). Due to the symmetry the en-
ergy sinks from the incident wave equally into wavesk+

r andk−
r

which will from a standing wave with crests parallel tox-axis. If
the resonance is strong enough, and the phase matching occs,
at a certain time the amplitude of both sets of standing wavesare
equal, and a symmetric three dimensional standing wave appears
on the surface.

To numerically show this possibility, we consider a
monochromatic incident surface wave of normalized wavenum-
berk=(5,0) with a bottom composed ofkb1=(5,0) andkb2=(0,5)
in a shallow basin of normalized depthh = 0.1257. Numeri-
Copyright c© 2009 by ASME
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Figure 4. Growth of the amplitude of the resonant standing wave (solid

line) and the decay in the amplitude of the incident wave (dash-lines) as

the standing waves are being formed.

cal simulation shows (figure 4) that after a time aboutt ≈ 45T0,
whereT0 is the period of the incident wave, the amplitudes o
x-parallel andy-parallel standing waves are close. The graph
generated by measuring the (spatial) Fourier components ofthe
wave field. If waves are progressive, the corresponding Fourier
amplitude stays constant as long as the amplitude is constt.
If standing, then the corresponding Fourier amplitude oscillates.
The solid line in figure 4 is a push (Hilbert transform) to the curve
corresponds to the resonant wave. The dash-lines are uppernd
lower pushes for the incident wave. Note that at the beginnig
the incident wave is a simple monochromatic progressive wae,
hence no oscillation is seen in the Fourier amplitude. As there-
flected wave forms (i.e. standing wave starts to form), the Fourier
amplitude starts to oscillate and lower dash-line curve hasto be
introduced.

The three dimensional standing wave pattern at the peak
the amplitude of the resonant wave (i.e.t ≈ 45T0) is shown in
figure 5. This mechanism can be used in experimentations
towing tanks with one paddle to form symmetric (or differen)
standing waves and offers another potential mechanism forhe
generation of standing waves in shallow basins that may h
better understanding of the micro-seismic spectrum.

3.3 Oblique class III Bragg resonance
Oblique class III Bragg resonance can significantly affe

the evolution of ocean spectrum, and contribute to the generation
of new frequency waves. This is of importance in many practical
applications including the operation of large LNG carriersoff-
shore, yet close to harbors, where the water is shallow and waves
are multi-directional (6).

As an illustrative example here we consider a case in whic
due to class III Bragg resonance, a resonant wave forms w
its direction of propagation perpendicular to the direction of the
original co-propagating uni-directional incident waves.

Considerλ1=10 m andλ2=18.7 m co-propagating surface
waves propagating along the positivex-axis in a very shallow
6
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Figure 5. A symmetric standing wave pattern formation as a result of

third order Bragg resonance of a monochromatic incident wave with two

bottom topography components.

basin ofh = 2 meters depth. If the topography wavelength i
λb=75 m and its wavenumber makesθb = 35 degree with the
positivex-axis, a relatively long (subharmonic) surface wave o
λr=30 m propagating perpendicularly to the initial surface waves
will be generated as a result of oblique class III Bragg resonance
between waves of different frequencies.

To simulate this problem, we take normalized variable
L0=24 m for length andT0=1.57 sec for time. Numbers of points
alongx- andy-axis areNDX=128 andNDY=64 respectively, and
δt/T1=32 whereT1 is the period of the first incident surface wave
Figure 6 compares the surface pattern in a linear simulationwith
the simulation in which nonlinearities are taken into account (or-
der of nonlinearity in HOS is set toM=4). Cross-waves with
wavenumberkr = 5 are clearly seen, perpendicular to the cres
of the initial incident waves. Figure 7 shows the measured am-
plitude as a function of time.

Superharmonic class III Bragg resonance happens when
frequency of the resonant wave is the sum of frequencies of i-
cident waves. Consider two incident waves of wavenumbe
k1,k2 and a topography with the wavenumberkb. Assume
k+

r =k1 + k2 + kb is a resonant wave, i.e.D (k+
r ,ωr) = 0 where

ωr = ω1 + ω2. Now if kb⊥(k1 + k2), thenk−
r =k1 + k2−kb has

to be a resonant wave too. In a special case whenk1 andk2 are
aligned, there is no preferred direction, hence energy has to be
equally distributed betweenk+

r andk−
r resulting in a propagat-

ing pattern in the direction parallel to(k1 + k2) and a standing
pattern in the perpendicular direction. The 3D pattern propaga-
tion then looks like a moving egg-rack.

As an example consider two incident wave with normalize
wavenumbersk1=(8,0) andk2=(5,0) traveling over bottom un-
Copyright c© 2009 by ASME
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Figure 6. High order numerical simulation of waves propagating over un-

dulatory topography when class III Bragg resonance condition is satisfied.

a. Linear simulation b. higher order simulation. Cross waves kb=5 are ob-

served perpendicular to the direction of propagation of incident waves.

Figure 7. Evolution of amplitudes of incident and resonant waves in an

oblique class III Bragg resonance. Normalized wave numbers are shown

on the figure.
7

dulation with perpendicular wavenumber ofkb=(0,12) in a wa-
ter of normalized depthh=0.1257. In a sea of depth 10 m, thes
numbers are correspond to waves with wavenumbersλ1=100 m
andλ2=62.5 m with a bottom wavelength ofλb=42 m. These two
incident waves and bottom component satisfy the superharmnic
class III Bragg resonance and sincekb⊥(k1 +k2) a double class
III Bragg resonance happens.

Figure 8 shows a numerical simulation of this case. Numb
of points alongx- andy-axis areNDX=128 andNDY=64 respec-
tively, andδt/T1=16 whereT1 is the period of the first incident
surface wave. Figure 8a shows the surface pattern if no nonn-
earity is taken into account whereas taking higher order (M=4)
nonlinearity results in the generation of relatively strong oblique
waves superimposed on the surface. The oblique resonant we
growth as a function of time is shown in figure 9 where due
the amplitude decay of initial surface waves the new resont
wave arises. However, the crests of the resonant oblique waes
do not move in they-direction. This can be seen from figure 1
where a top view of the wavefield is depicted for two relativey
close times. With waves propagating in thex-direction clearly
observed, the crests in they-direction are stationary.

4 Conclusion
Higher order oblique and normal resonance interaction

surface waves with bottom topography is considered and a n-
ber of potential application is underscored via illustrative exam-
ples and direct numerical simulations. At the third order, two
surface waves can be in resonance via two bottom compon
(Class II Bragg resonance), or, three surface waves via oneot-
tom component (Class III Bragg resonance). Contrary to Cls
I and II, where participating waves in a triad/quartet resonance
have the same frequency, in Class III they can have differentfre-
quencies. Therefore Class III can offer a variety of new posi-
bilities for the generation of resonant waves, hence, affecting the
evolution of ocean wave spectrum.

For the case of normal incidence Class III Bragg resona
two examples have been studied: regular ocean wave generon
as a result of nonlinear interaction of two short surface waves
with a regular wavelength bottom undulation, and long infragrav-
ity wave generation via interaction of regular wavelength surface
waves and bottom undulations. The latter can particularly be im-
portant in the problem of resonance of LNG carriers moored
shallow basins near the shore.

In the case of oblique resonance, it is shown that the th
order Bragg resonance can generate a symmetric three dim
sional standing wave pattern from a monochromatic incidentsur-
face wave via a bi-harmonic bottom topography. Oblique clas
III Bragg resonance is also shown to have potentials in formation
of long/short surface waves oblique to the incident waves ifthe
incident waves arrive at the bottom undulation with appropriate
angles.
Copyright c© 2009 by ASME
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Figure 8. High order numerical simulation of waves propagating over

undulatory topography when class III Bragg resonance condition is sat-

isfied. a. Linear simulation b. higher order (M=4) simulation. Oblique

waves k=(13,12) are observed due to Class III Bragg resonance of sur-

face waves with a perpendicular bottom undulation.

Figure 9. Evolution of amplitudes of incident and resonant waves in an

oblique Class III Bragg resonance. Normalized wave numbers are shown

on the figure.
8

Real ocean surface is composed of a spectrum of waves
is the topography. Therefore a variety of combinations, similar to
those studied in this paper, may occur resulting in an accelerated
energy transfer to other frequencies. Our considerations suggest
that this energy transfer, which is solely due to nonlinearity, can
in fact be strong and can deform or accelerate the evolutionf
the ocean spectrum; therefore it has to be carefully taken ito
account for a safe offshore design particularly in shallow basins
and near shore areas with appreciable bottom irregularities.
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