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Shore protection by small seabed bars was once considered possible because seafloor
undulations strongly reflect surface waves of twice the wavelength by the so-called
Bragg resonance mechanism. The idea, however, proved “unreliable” when Yu & Mei
(J. Fluid Mech., vol. 404, 2000, pp. 251-268) showed that a patch of longshore seabed
bars adjacent to a reflective shore could result in larger waves at the shoreline than
in the open ocean. Here we propose to revamp the Bragg resonance mechanism as a
means of coastal protection by considering oblique seabed bars that divert, rather than
reflect, shore-normal incident waves to the shore-parallel direction. The incident wave
energy is therefore fully deflected to the sides, leaving a wake of decreased wave activity
downstream of the patch. We show, via multiple-scale analysis supported by direct
numerical simulations, that the creation of a large protected wake requires a bi-chromatic
patch to deflect the incident waves to the shore-parallel direction. We demonstrate that
the shore protection efficiency provided by this novel arrangement is not affected by
reflection of leaked waves at the shoreline, nor by small frequency detuning.

1. Introduction

Coastal erosion, a threat to coastal communities and life, is accelerating because
climate change has resulted in more frequent and stronger storms (c.f. Webster et al.
2005; Emanuel 2005). The Outer Banks of North Carolina are just one example of the
areas that are very sensitive to storm conditions and that have sustained extensive
property damage (Inman & Dolan 1989). The use of massive breakwaters as a means
to mitigate storms of increasing severity remains the most common option despite well
known imperfections: breakwaters adversely alter the coastal environment, require strong
and costly foundations, need frequent maintenance due to cyclic load of the waves as
well as liquefaction of the top part, and cause seabed soil subsidence at their foot besides
potentially interfering with navigation.

In the 1980s, a promising alternative for coastal protection was put forward using a
series of small man-made seabed-mounted corrugations to reflect the incident waves. The
idea originated from the work of Davies (1982) who first studied the resonant interaction
between free propagating surface waves and seabed undulations whose wavelengths are
in a 2:1 ratio. The phenomenon is sometimes referred to as Bragg reflection or resonance
due to its similarity with the selected reflection of X-rays from the surface of a crystal
in solid state physics (see e.g. Pinsker 1978). The strong reflection of water waves by
Bragg mechanism was shortly after investigated experimentally (c.f. Heathershaw 1982;
Davies & Heathershaw 1984) as well as theoretically (see Mitra & Greenberg 1984; Mei
1985; Kirby 1986), and is now known to be of significant importance in the formation of
nearshore sandbars and in the evolution of oceanic wave-field in littoral zones (e.g. Elgar
et al. 2003).

The resonance condition discovered by Davies (1982) is in fact a special case of the
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complete set of Bragg resonance conditions that can be obtained by regular perturbation
of the potential flow equations for small corrugations (c.f. Liu & Yue 1998). At each
order of the perturbation expansion, a set of resonated waves are obtained from the
bottom boundary condition in which the seabed harmonics interact with the lower order
wave solutions. The first order variations of the incident waves at or near resonance can
then be obtained using multiple scales (e.g. Naciri & Mei 1988). For wave frequencies
significantly different from the Bragg frequency, or in the presence of large amplitude
bottom corrugations, higher-order theories such as Floquet theory become necessary to
accurately predict solutions far from resonance, and to include evanescent modes and
higher-order wave-bottom interactions (c.f. Yu & Howard 2012, and references therein).

In cases where closed-form solutions cannot be obtained, a wide range of numerical
models are available to study water wave scattering by seabed topographies. These in-
clude the extended versions of the mild slope equations (e.g. Kirby 1986; Porter & Staziker
1995), the coupled mode approach (Athanassoulis & Belibassakis 1999; Belibassakis et al.
2001), the integral matching/discretized bottom method (O’Hare & Davies 1992; Seo
2014), the fully-nonlinear Boussinesq equation adjusted for rapid bottom undulations
(see Madsen et al. 2006), and the high-order spectral method (e.g. Dommermuth &
Yue 1987). Numerical investigations of Bragg scattering have helped explain several
discrepancies between theory and experiments, including: the difference between the
observed and predicted class II Bragg resonance frequency being due to evanescent
modes (c.f. Guazzelli et al. 1992), and the resonant frequency downshift/upshift for the
subharmonic/superharmonic class III Bragg condition due to high-order nonlinearity (c.f.
Madsen et al. 2006).

The first-order reflection of incident waves by longshore seabed-mounted bars has been
extensively studied theoretically, computationally, and experimentally to understand its
effectiveness and limitations in shielding the shoreline (e.g. Kirby & Anton 1990; Bailard
et al. 1990, 1992). The progress was however almost halted when Yu & Mei (2000a), based
on earlier observations of Kirby & Anton (1990), showed that constructive interference
of leaked waves trapped between the patch and a reflective shoreline could eventually
result in significant wave amplification at the coast (c.f. figure 1a). The erosion of both
natural sandbars and beaches being inevitable, shore protection by Bragg reflection was
subsequently deemed unreliable. The importance of reflective boundaries on the slow
modulation of the wave solution by Bragg reflection has also been demonstrated in wave
tanks (c.f. Howard & Yu 2007; Weidman et al. 2015), and is at the basis of the Fabry-
Perot resonance mechanism recently reported in the context of water waves (Couston
et al. 2015).

Here we consider an arrangement of corrugations that can deflect, rather than re-
flect, shore-normal incident waves to the shore-parallel direction. We call this resonance
mechanism Bragg deflection, to emphasize the contrast with Bragg reflection (since for
the former the angle between the incident and resonated waves is less than or equal to
90◦). The proposed patch of corrugations has a plane of symmetry, aligned with the
direction of incident wave propagation, such that the incident wave energy gets diverted
in the downstream to the sides of a protected wake (see figure 1b). One key advantage
of the protection offered in the wake of such topography is that the protection efficiency
is unaffected by coastal reflections, because waves reflected from the shoreline (either
curved or straight) simply propagate back to the open ocean.

This manuscript considers the analysis of the Bragg deflection mechanism as a means of
shore protection, and is organized as follows. The formulation of the problem, governing
equations, and Bragg resonance conditions are presented in §2. In §3, using multiple-
scale analysis, we investigate the protection provided by a monochromatic patch. The
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Figure 1. Schematics of shore protection by (a) Bragg reflection and (b) Bragg deflection. The
gray-shaded area downstream of the corrugations represents the protected wake. (a) Most of the
energy of an incident wave ki, that arrives normal to a long patch of seabed bars, is reflected
back (kr). Nevertheless, a small part of the incident energy is still transmitted through the
patch (kt). The wave kt, after reflecting back from the shoreline (dotted arrows), gets reflected
strongly by the patch (krt ) with a small part transmitted back to the open ocean (ktt). The
process repeats as the krt wave reflected by the shoreline arrives again at the bars. Significant
wave amplification can result from constructive wave interference between the trapped waves
(i.e. kt, k

r
t , krrt , ...) depending on the distance between the patch and the shoreline (see Yu

& Mei 2000a). (b) With oblique seabed bars, the incident wave ki is deflected but also fully
transmitted to the downstream (kt). The kt wave is then reflected by the shoreline and crosses
back over the corrugated patch toward the open ocean.

advantages of a bi-chromatic patch for cases where the deflection angle is close to 90◦

are presented and discussed in §4. In §5, we validate the multiple-scale results by direct
simulation, and analyze the effect of detuning and perpendicular deflection. Concluding
remarks are finally drawn in §6.

2. Problem formulation

Consider the propagation of small amplitude waves on the surface of an incompressible,
homogeneous and inviscid fluid of mean water depth h. We assume that the flow field
is irrotational such that the velocity vector ~v can be expressed as ~v = ∇Φ, where Φ is
the velocity potential. We define a Cartesian coordinate system (x, y, z) with x, y axis
on the mean free surface and z axis positive upward. Governing equations and boundary
conditions read

∇2Φ = 0, −h+ ζ(x, y) 6 z 6 η(x, y, t), (2.1a)

Φtt + gΦz + 2∇Φ · ∇Φt +
1

2
∇Φ · ∇(∇Φ · ∇Φ) = 0, z = η(x, y, t), (2.1b)

Φz = (−∇hh+∇hζ) · ∇hΦ, z = −h+ ζ(x, y), (2.1c)

where η(x, y, t) is the free-surface elevation, g is the gravitational acceleration, ∇h =
(∂x, ∂y) is the horizontal gradient operator, and ζ(x, y) is the height of the small bottom
corrugations measured from the mean seabed depth (z = −h) such that the seabed is at
z = −h + ζ. Equation (2.1a) expresses mass conservation, (2.1b) is the combined free-
surface boundary condition, and (2.1c) is the impermeable seabed kinematic boundary
condition. The free-surface elevation η(x, y, t) is obtained from the unsteady Bernoulli’s
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equation written on the free surface, i.e.,

η = −1

g
(Φt +

1

2
∇Φ · ∇Φ), z = η(x, y, t). (2.2)

Under the assumption of small surface slopes and small seabed corrugation slopes, i.e.
∇hη,∇hζ ∼ O(ε)� 1, a perturbation solution can be sought by expanding the velocity
potential and free-surface elevation in a perturbation series, i.e.,

Φ = φ(1) + φ(2) + φ(3) + ..., (2.3a)

η = η(1) + η(2) + η(3) + ..., (2.3b)

where (φ(m), η(m)) = O(εm). Substituting (2.3) in (2.1) and collecting terms of the same
order, we obtain a series of equations of the form (c.f. Liu et al. 1998)

∇2φ(m) = 0, in − h 6 z 6 0, (2.4a)

φ
(m)
tt + gφ(m)

z = F (m)(φ(1), ..., φ(m−1); η(1), ..., η(m−1)), on z = 0, (2.4b)

φ(m)
z = B(m)(φ(1), ..., φ(m−1); ζ), on z = −h. (2.4c)

At each order m, (2.4) is a linear partial differential equation for φ(m) with the right-
hand-side being a nonlinear function of the solutions to the lower order problems. As
a result, (2.4) can be solved sequentially starting from the leading order, i.e. the linear
problem. The leading-order problem is unaffected by the bottom corrugations and has
propagating wave solutions of the general form

φ(1) =
A(1)

2

g

ω

cosh[k(z + h)]

cosh(kh)
ei(k·x−ωt) + cc, (2.5a)

η(1) = i
A(1)

2
ei(k·x−ωt) + cc, (2.5b)

where A(1) is the wave amplitude, cc stands for complex conjugate, and where ω and
k, i.e. the wave frequency and wavenumber vector, are related through the dispersion
relation

D(ω; k = |k|) ≡ ω2 − gk tanh(kh) = 0. (2.6)

At higher order m > 1, according to Fredholm alternative, if at least one of the forcing
terms is secular, i.e. either F (m) or B(m) has an harmonic equal to one of the eigenvalues
of the homogeneous problem, then no bounded solution can be found. At the second
order, it is well known that F (2) can never satisfy such a condition. However, if the
seabed has a component with the wavenumber vector kb such that

k± kb = kr, and |kr| = |k|, (2.7)

then B(2) is secular and a wave with wavenumber kr will be resonated. In this case,
the second order wave linearly grows in time, until it is too large for (2.3) to hold. A
similar scenario happens also at the third order and B(3) becomes secular if the seabed
is bi-chromatic with wavenumbers kb1 and kb2 such that

k± kb1 ± kb2 = kr, and |kr| = |k|. (2.8)

The resonance arising at the second order is called class I Bragg resonance, and the
resonance arising at the third order (assuming no class I Bragg resonance between k and
kb1 or kb2) is called class II Bragg resonance (c.f. Liu et al. 1998).

Since the class I Bragg resonance mechanism is more efficient at altering the incident
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Figure 2. Schematics and Bragg resonance conditions for the deflection of k1 = k1x̂ waves into
k2 waves by (a) a monochromatic patch and (b) a bi-chromatic patch. The thin solid oblique
lines represent the seabed bar crests whose corresponding bottom wavenumbers are denoted
by kb for the monochromatic patch, and kb1 and kb2 for the bi-chromatic patch. The problem
is symmetric with respect to the y = 0 plane such that significant wave energy reduction is
expected in the shaded wake downstream of each patch. The class I Bragg resonance conditions
|k2| = |k1 ± kb| = |k1| (c.f. equation (2.7)) for the monochromatic patch are shown in the
upper and lower halves of the top circle, while the class I2 Bragg resonance condition, i.e.
|kt| = |k1 ± kb1 | = |k1| and |k2| = |k1 ± kb1 ± kb2 | = |k1| (c.f. §4, and note the contrast with
class II in equation (2.8)) for the bi-chromatic patch are shown in the upper and lower halves
of the bottom circle. Note that all wavenumbers correspond to leading-order wave modes and
therefore the superscripts (1) in (2.5) have been dropped.

wave-field than the high-order ones, in an attempt to protect the shore by diverting the
incident waves away from a protected area, we will first consider the oblique class I Bragg
resonance (c.f. figure 2a). It is, nevertheless, known that class I resonance is very weak
for large deflection angles (i.e. for θ2 → π/2 in figure 2a), and is degenerate at θ2 = π/2.
As we will show in this manuscript, it is therefore advantageous, in order to deflect the
normally incident waves toward the alongshore direction, to consider a superposition of
two sets of oblique seabed bars (figure 2b). In order for the transfer of energy from the
incident k1 wave to the target k2 wave to be efficiently mediated by the transitional kt
wave, here we will consider that k1 and kb1 satisfy a class I Bragg resonance condition, i.e.
(2.7). In effect, the proposed superposition of corrugations thus involves two corrugation
modes, but all interactions happen mainly at the second-order (in contrast to Class II
Bragg resonance that happens at the third-order). Extending the nomenclature of Liu
et al. (1998), we will refer to this scenario as a class I2 Bragg resonance condition.

In the next two sections, we derive using multiple scales the slow evolution of the wave
amplitudes near resonance for both the monochromatic (§3) and bi-chromatic patch
(§4). The method of multiple scales is appropriate here because we only seek the leading-
order solution for water waves propagating over small corrugations, and therefore the
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superscripts (1),(2) , ...(m) in (2.3) can be dropped. Since our focus here is in nearshore
areas where the waterdepth is typically smaller than the surface wavelength, the effect
of directional spreading of incident waves will be neglected, which can be justified to
first-order on the ground of wave refraction in shallow water.

3. Class I Bragg deflection for shore protection

Let us first consider a monochromatic patch with a plane of symmetry at y = 0, such
that shore-normal incident waves get deflected to the sides of the x-axis by a set of
oblique seabed bars (figure 2a). The bottom corrugations are taken as ζ(x, y) for y > 0
and ζ(x,−y) for y < 0, where

ζ(x, y) =

{
d
2 (ekb·x + e−kb·x), 0 < x < w,

0, otherwise.
(3.1)

Under the class I Bragg resonance condition, i.e. |k2| = |k1 + kb| = |k1|, the incident
and resonated wave amplitudes are of the same order. Their evolution, however, is slow
for small bottom corrugations, and therefore can be decoupled from the fast variations
of the carrier waves. We, therefore, consider a first-order velocity potential that accounts
for both the incident (A1) and resonated (A2) waves according to

φ(1) =
g

ω

cosh[k1(z + h)]

cosh(k1h)

[
A1(x̄, ȳ, t̄)

2
ei(k1·x−ωt) +

A2(x̄, ȳ, t̄)

2
ei(k2·x−ωt)

]
+ cc. (3.2)

The envelope amplitudes A1,2 are functions of the slow space and time coordinates
(x̄, ȳ, t̄) ∼ ε(x, y, t) with ε � 1. The governing equations for the slow evolution of A1,2,
obtained from multiple-scale analysis, read (Mei 1985)

ε
∂

∂t̄
A1 + εCg1 · ∇̄A1 + ε(∇̄ ·Cg1)

A1

2
= iA2Ωc, (3.3a)

ε
∂

∂t̄
A2 + εCg2 · ∇̄A2 + ε(∇̄ ·Cg2)

A2

2
= iA1Ωc, (3.3b)

where ∇̄ = (∂/∂x̄, ∂/∂ȳ) and

Ωc =
ωdk1 · k2

2k1 sinh(2k1h)
, Cgj =

kjω

2k2
1

[
1 +

2k1h

sinh(2k1h)

]
=

kj
k1
Cg. (3.4)

Note that ε appears in front of all terms on the left-hand-side of equation (3.3), but that
it is absent from the right-hand-side because the ripple amplitude d � O(k−1

1 ). This
is simply due to the fact that we did not normalize the ripple amplitude d to keep it
small compared to the other length scales of the system. The conservation of wave action
equation, i.e.

∂

∂t̄

(
|A1|2

2
+
|A2|2

2

)
+ ∇̄ ·

(
Cg1

|A1|2

2
+ Cg2

|A2|2

2

)
= 0, (3.5)

deduced from (3.3), demonstrates that energy is exchanged between the two waves
without any losses. We will make extensive use of the normalized amplitude variables

a∗1 = |A1|/a0, a∗2 = |A2|
√

cos θ2/a0, (3.6)

throughout this manuscript, as they greatly simplify the analysis. For instance, (3.5)

reduces to a∗
2

1 + a∗
2

2 = 1 when ∂/∂t̄ = ∂/∂ȳ = 0, which expresses the conservation of
wave energy flux in the x-direction for a patch which is infinitely long in the y-direction
and at the steady-state.
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Figure 3. Normalized envelope amplitudes (a) a∗1 and (b) a∗2 as obtained from equation (3.3)
with ∂/∂t̄ = 0. The patch is semi-infinite, starting from x = 0, and the bottom corrugations
are given by ζ(x, y) for y > 0 and by ζ(x,−y) for y < 0 (c.f. equation (3.1) with w = +∞).
The amplitude modulations far from the plane of symmetry (highlighted in the rectangles) are
clearly the same as the y periodic solutions (shown by the solid lines in the top figures). We
only show the amplitudes for y > 0 since the problem is symmetric with respect to the y = 0
axis. The small vertical arrows show the critical patch width wcr1 (such that a∗1(x = wcr1) = 0
far from y = 0), and the oblique arrows starting from the origin of each axis show the direction
of propagation of the k2 waves. The physical parameters are θ2 = π/4, k1h = 0.2, a0/h = 10−3,
d/h = 0.1. The simulation parameters are δx/λ1 = 0.05 and δy/λ1 = 0.2.

The system of equations (3.3) reduced under the assumption of steady-state and
without detuning is not amenable to analytical treatment for a patch with a plane of
symmetry (c.f. the solution derived for a corner patch of parallel seabed bars in Mei et al.
1988). As a result, here, we solve equations (3.3) assuming ∂/∂t̄ = 0 numerically with
an explicit finite-difference scheme. We use the Runge-Kutta fourth-order method for
integration along the x axis (the x variable being similar to time here), and a second-order
central finite-difference scheme in y. For the problem of shore protection, the incident
wave has wavenumber k1 = k1x̂ and the boundary conditions are A1 = a0, A2 = 0 at
x = 0 and A2 = 0 at y = 0. The last condition enforces A1 = a0 at y = 0.

We show the normalized envelope amplitudes a∗1,2 obtained over a monochromatic
patch in figure 3. The patch is semi-infinite in the x-direction and the deflection angle is
θ2 = π/4. While the behavior of the envelope amplitudes is relatively complex near the
patch’s plane of symmetry, their evolution for y/λ1 � 1 becomes one-dimensional and
periodic. The solution far from the patch’s plane of symmetry can thus be obtained in
closed-form, assuming ∂/∂ȳ = 0, such that(

A1

A2

)
= a0

(
cosKcx
−i√
cos θ2

sinKcx

)
, (3.7)
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with

Kc = Ωc/(Cg
√

cos θ2). (3.8)

In figure 3, and from equation (3.7), we see that the incident wave energy far from the
plane of symmetry first becomes fully transferred to the deflected wave mode at x =
wcr1 = π/(2Kc). Therefore, wcr1 is the critical monochromatic patch width since it is the
shortest width that minimizes the amplitude of the incident waves in the downstream and
away from the patch’s plane of symmetry. At the end of a patch truncated at x = wcr1 ,
most of the incident wave energy is deflected to the sides in the form of waves propagating
at the angle θ2 with respect to the x axis. Significant shore protection can thus be
expected downstream of the patch, in a wake that looks like an isosceles triangle, with
vertex angle equal to twice the angle (θ2) of the Bragg resonated wave. As mentioned
before, it is to be noted that class I Bragg resonance is degenerate at θ2 = π/2. It can be
shown that wcr1 →∞ when θ2 → π/2, i.e., a monochromatic bar patch must be infinitely
wide for a large deflection angle. The decreased efficiency of energy transfer between the
incident and deflected waves for large θ2 implies that a monochromatic patch cannot be
used to protect large regions of a coast. This limitation is resolved in the next section
as we show that a bi-chromatic patch, with the same total ripple amplitude as for the
monochromatic one, is very efficient at deflecting incident waves for all θ2 angles.

4. Class I2 Bragg deflection for shore protection

Here we consider the case of a bi-chromatic patch for which the transfer of k1 wave
energy to the k2 wave is mediated by a transitional Bragg resonated kt wave (c.f. figure
2b). We will show that the critical bi-chromatic patch width wcr2 is much smaller than
the critical monochromatic patch width wcr1 for a large deflection angle θ2. We first
study the behavior of the envelope amplitudes far from the patch’s plane of symmetry to
derive the critical patch width wcr2 , and verify that the incident wave amplitude reaches
zero downstream of the patch. We then solve the multiple-scale equations for the case of
a patch with a plane of symmetry using the finite-difference scheme presented in §3.

4.1. Closed-form solution far from the patch’s plane of symmetry

Here we derive the envelope equations for wave propagation over a bi-chromatic patch,
i.e. with bottom corrugations of the form

ζ =
d1

2
(ekb1

·x + e−kb1
·x) +

d2

2
(ekb2

·x + e−kb2
·x). (4.1)

We assume that the incident wave number k1 satisfies both the class I and class II
Bragg resonance conditions (which we refer to as class I2), such that kt ≡ k1 + kb1 and
k2 ≡ kt + kb2 are free waves that satisfy the dispersion relation (2.6). Since the wave kt
is the first wave resonated, it can be shown using regular perturbation that initially the
kt wave amplitude increases linearly in time while the k2-wave growth is quadratic.

To obtain the multiple-scale equations for the bi-modal corrugation problem under the
assumption of small bottom steepness, we consider a leading-order velocity potential of
the form

φ(1) =
g

ω

cosh[k1(z + h)]

cosh(k1h)

(
A1

2
eik1·x +

At
2

eikt·x +
A2

2
eik2·x

)
e−iωt + cc. (4.2)

The envelope amplitudes A1,t,2 are functions of the slow coordinates (x̄, ȳ, t̄) ∼ ε(x, y, t).
Similar to the monochromatic problem, the evolutionary equations for A1,t,2 are derived
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from the so-called compatibility condition obtained upon inspection of the second-order
problem in bottom steepness. The derivation is provided in Appendix I, and the final
equations read

ε
∂

∂t̄
A1 + Cg1 · ε∇̄A1 +

A1

2
ε∇̄ ·Cg1 = iAtΩ1, (4.3a)

ε
∂

∂t̄
At + Cgt · ε∇̄At +

At
2
ε∇̄ ·Cgt = iA1Ω1 + iA2Ω2, (4.3b)

ε
∂

∂t̄
A2 + Cg2 · ε∇̄A2 +

A2

2
ε∇̄ ·Cg2 = iAtΩ2, (4.3c)

where Cg1,t,2 is given in (3.4) and with

Ω1 =
ωd1k1 · kt

2k1 sinh 2k1h
, Ω2 =

ωd2kt · k2

2k1 sinh 2k1h
. (4.4)

The governing equations (4.3) are valid for slow mean bottom variations, but for mathe-
matical expediency, we will now assume that h is constant (⇒ ∇̄·Cg1,t,2 = 0). In practice,
the effect of a mildly sloping beach does not change the Bragg resonance conditions which
can be kept satisfied everywhere as long as the corrugation wavelength is adjusted to the
local surface wavelength (c.f. Alam 2012a). The conservation of wave action equation,
i.e.

∂

∂t̄

(
|A1|2

2
+
|At|2

2
+
|A2|2

2

)
+ ∇̄ ·

(
Cg1

|A1|2

2
+ Cgt

|At|2

2
+ Cg2

|A2|2

2

)
= 0, (4.5)

derived from (4.3), is the natural extension of (3.5) to the three-wave interaction problem.
Defining the normalized transitional wave amplitude a∗t = |At|

√
cos θt/a0, (4.5) reduces

to a∗
2

1 + a∗
2

t + a∗
2

2 = 1 when ∂/∂t̄ = ∂/∂ȳ = 0 (c.f. (3.6) for a∗1,2).
In the case of perfectly tuned waves far from the patch’s plane of symmetry, a closed-

form solution can be derived at the steady-state. Specifically, assuming ∂/∂t̄ = ∂/∂ȳ = 0
and enforcing the boundary conditions A1 = a0, At,2 = 0 at x = 0, we obtain the solution A1

At
A2

 =
a0K1K2

K12

 K2/K1 +K1/K2 cosK12x
iK12/K2 sinK12x
−1 + cosK12x

 , (4.6)

where

K1 = Ω1/(Cg
√

cos θt), K2 = Ω2/(Cg
√

cos θt cos θ2), K12 =
√
K2

1 +K2
2 . (4.7)

The envelope amplitudes (4.6) are oscillatory over the patch, but the initial k1 wave
does not necessarily cede all its energy to the kt or k2 wave. For d2 6= 0, the k1 wave
amplitude reaches a minimum A1 = a0(K2

2 − K2
1 )/K12 at x = π/K12, which is zero if

and only if

K2 = K1 ⇔ d2/d1 =
√

cos θ2
cos θt

cos(θ2 − θt)
, (4.8)

in which case K12 reduces to

K12 =
√

2K1. (4.9)

Equation (4.8) describes the necessary balance between the efficiency of the k1↔ kt
and kt↔ k2 Bragg interactions to achieve a synchronous energy transfer from k1 to
k2: if one of the deflection angles increases relative to the other, which diminishes the
corresponding interaction efficiency, then the associated ripple amplitude should also
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increase in order to balance the effect. The condition (4.8) is illustrated in figure 4a
where we show the ratio d2/d1 as a function of θ2 for four different transitional angles.
Clearly d2/d1 decreases when θt increases since the kt↔k2 Bragg interaction becomes
more effective with decreasing θ2−θt. The ratio d2/d1 also decreases almost monotonically
with increasing θ2 since the k2 wave’s time spent over the patch, or, in other words, the

number of wave-seabed interactions, scales with
√

1 + tan2 θ2. For instance, when k1

waves travel one unit distance in the x direction, k2 waves only move by cos θ2 in x.
When (4.8) is satisfied, all the k1-wave energy transfers to the k2 waves after traveling

the distance wcr2 = π/K12, which we shall refer to as the critical bi-chromatic patch
width. For a fixed θ2 and a fixed normalized total ripple amplitude (d1 + d2)/h, the
critical bi-chromatic patch width has a unique minimum at θt = θoptt , such that θoptt

maximizes K12 as given by (4.9). The variations of θoptt as a function of θ2 are shown in
figure 4b.

In practice, θoptt can be approximated by θ2/2 since the corresponding critical patch
widths are nearly the same, as can be seen in figure 4c from the overlap of the wcr2 curve
obtained for θoptt with the dashed curve obtained for θt = θ2/2. Figure 4c also shows
the critical patch width wcr1 for a monochromatic patch. Interestingly, wcr2 is greater
than wcr1 for relatively small deflection angles because we assumed d2 6= 0 in deriving
(4.8). Assuming d2 = 0, we would get wcr2 = wcr1 since both patches would involve only
one Bragg interaction. Since wcr1 = wcr2 at θ2 ∼ 11π/25 for θt = π/2, as can be seen
from figure 4c (intersection of dash-dash line with 1-corr. curve), the bi-chromatic patch
becomes significantly more efficient for shore protection for deflection angles θ2 > 11π/25.

While the values predicted by multiple-scale for d2/d1 (see figure 4a), θoptt (figure 4b),
and wcr2 (figure 4c) are valid for most θ2, the trends in the limit where θ2 → 0 or
θ2 → π/2 may be inaccurate. Indeed, θ2 ∼ 0 implies seabed bar crests almost parallel to
k1, which contradicts the multiple scale assumption of a rapidly varying waterdepth in
x. The configuration θt ∼ θ2 also violates the multiple-scale assumption since in this case
some of the seabed bar crests become almost parallel to kt. The case of θ2 = π/2 requires
also special care, primarily because the incident wave energy cannot be transferred to the
target k2 waves at steady-state assuming y invariance. Shore protection by perpendicular
deflection, for which θ2 = π/2, will be discussed in details in §5 using direct simulation.

4.2. Effect of the patch’s plane of symmetry

We now take into account the patch’s plane of symmetry, that is, we consider bottom
corrugations given by ζ(x, y) in (4.1) for y > 0, and by ζ(x,−y) for y < 0. We solve
the system of equations (4.3) with the same finite-difference scheme used for the case of
a monochromatic patch in §3, and we enforce the synchronization condition (4.8), such
that full energy transfer from the k1 waves to the k2 waves is achieved far from the plane
of symmetry. The incident wave has wavenumber k1 = k1x̂ and the boundary conditions
are A1 = a0, At,2 = 0 at x = 0 and At,2 = 0 at y = 0. The last condition forces also
A1 = a0 at y = 0.

We show a∗1,t,2 obtained for a semi-infinite patch in x direction with θ2 = 7π/15 and
θt = θ2/2 in figure 5. We have marked in figure 5 the directions of the kt and k2 waves
by oblique arrows starting from the origin of each axis. Far from y = 0, the problem
becomes one-dimensional and the separation wavelength between two successive crests
of the k1 or k2 wave envelope is 2wcr2 = 2π/K12 as predicted by (4.6) (see the figures
on top of each frame that show the y-invariant solutions).

The wave patterns near y = 0 show the remarkable complexity of the three-wave
interaction process near the y = 0 plane of symmetry. Generally, wave amplitudes near
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Figure 4. (a) Ratio of the corrugation amplitudes d2/d1 as a function of θ2, such that full
energy transfer is achieved between the k1 wave and the k2 wave at the end of a patch
of width w = wcr2 = π/K12 (c.f (4.8)). The four different curves correspond to different
transitional angles θt. (b) The unique optimal transitional angle θoptt , as a function of θ2, which
minimizes the critical patch width wcr2 , for a fixed total ripple amplitude (d1+d2)/h = 0.12 and
normalized water depth k1h = 0.2, and provided that (4.8) is satisfied. (c) Plot of the critical
patch width wcr2 for bi-modal corrugations (2-corr. patch) for various transitional angles (same
line-style notation as in figure 4a). We also plot the critical patch width for a monochromatic
patch wcr1 = π/(2Kc) (1-corr. patch) for which the corrugation amplitude is d/h = 0.12 (c.f.
(3.8)). The critical monochromatic patch width becomes rapidly much larger than the critical
bi-chromatic patch width when θ2 → π/2.

y = 0 are smaller further down the patch due to the deflection. The qualitative behavior
of waves in each one of the three distinguishable regions (i.e. y/x > tan θ2, tan θ2 >
y/x > tan θt, and y/x < tan θt), changes with a change in θt or θ2. It is to be noted that
once we introduce a plane of symmetry at y = 0, neither a∗1 nor a∗t become uniformly
zero in y at x = wcr2 (c.f. the near field y ∼ 0 and x = wcr2 in figure 6a). Therefore, even
though the critical patch width minimizes wave energy in the protected wake, there will
always be leaked waves emanating near y = 0 at the end of the patch and propagating
to the downstream.

Figure 6 shows the variations of the normalized wave amplitudes a∗1,t,2 as functions
of y at the end of a bi-chromatic patch truncated at x = wcr2 for θ2 = 11π/25 (a,b,c)
and θ2 = 7π/15 (d,e,f). For comparison, we also plot a∗1,2 for a monochromatic patch
ending at x = wcr1 (dash-dotted line). Clearly, the bi-chromatic patch achieves a much
better reduction in the incident wave amplitude everywhere (c.f. figures 6a,d). The k1

wave amplitude drops much more quickly in y for the bi-chromatic patch, because some
of its energy is stored in the hump of kt wave energy seen in figures 6b,e (note that
the horizontal axis is on a logarithmic scale truncated at 10−1). Using two corrugation
modes instead of one, thus not only decreases the critical patch width for large θ2, but also
spreads out a fraction of the energy leaked near y = 0 further to the sides in the form of
kt waves. Interestingly, the location of the second hump of k1 wave energy (figures 6a,d)
scales with 1/

√
cos θt, which suggests that the k1↔kt wave energy exchange is partially

oscillatory in y with a period similar to the period of oscillation in the x direction (c.f.
K12 in (4.9)).

Since the widths of the mono- and bi-chromatic patches are critical, we obtain a∗1 ∼ 0
and a∗2 ∼ 1 for y/λ1 � 1 in figures 6c,f. In both cases we also observe that the k2 wave
gains energy more rapidly for the smaller θ2 angle: for instance, considering the case of
θt = θ2/2 (solid lines), we find that a∗2 = 0.9 at y/λ1 = 80, 134 for θ2 = 11π/25, 7π/15.
This suggests that there might be a compromise to be found between deflecting at a very
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Figure 5. Normalized envelope amplitudes (a) a∗1, (b) a∗t and (c) a∗2, over a bi-chromatic patch,
as obtained from equation (4.3) with ∂/∂t̄ = 0. The patch is semi-infinite, starting from x = 0
onward, and the bottom corrugations are given by ζ(x, y) for y > 0 and by ζ(x,−y) for y < 0
(c.f. equation (4.1)). The amplitude modulations far from the plane of symmetry (i.e. highlighted
in the rectangles) are clearly similar to the y-invariant solutions (shown in the top figures). We
only show the amplitudes for y > 0 since the problem is symmetric with respect to the y = 0
plane. The small vertical arrows show the critical patch width wcr2 . The physical parameters
are θ2 = 7π/15, θt = θ2/2, k1h = 0.2, a0/h = 10−3, (d1 + d2)/h = 0.12, with (4.8) satisfied. The
simulation parameters are δx/λ1 = 0.05 and δy/λ1 = 0.2.

large angle and minimizing the energy content of the transmitted wave beams. The effect
of the transitional angle on the amount of energy captured by the k2 wave is relatively
minor, as can be seen from the overlap of the a∗2 curves obtained for θt = 0.2θ2, 0.5θ2, 0.8θ2

in figures 6c,f.
As a note of caution, we remark that the variations of the k1 wave amplitude are

relatively fast close to y = 0 (indeed a∗1 drops from 1 to about 0 in just five wavelengths
for θt = 0.5θ2 in figure 6a), such that the assumption of multiple scales becomes violated.
Nonetheless, a qualitatively similar behavior will be demonstrated in the next section
when solving the full potential flow equations.

5. Direct simulation

A realistic consideration of a patch of seabed bars for coastal protection must take
into account all resonance and near-resonance interactions as well as the effect of bottom
discontinuities and boundaries. As a general approach to address these, here we use a
direct simulation scheme of high-order spectral method. The high-order spectral scheme
solves the potential flow equation (2.1) assuming that the solution can be expressed
in terms of a convergent series (c.f. Zakharov 1968). It can take up to an arbitrary
order of nonlinearity M (i.e. number of terms in the perturbation expansion, typically
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Figure 6. Normalized envelope amplitudes a∗1, a∗t , a∗2 at the end of a patch truncated at the
critical patch width x = wcr2 (indicated by a small vertical arrow in figure 5) for θ2 = 11π/25
(plots (a), (b), (c)) and θ2 = 7π/15 (plots (d), (e), (f)). The x-axis is on a logarithmic scale so
as to show details near the plane of symmetry. Solid, dashed, and dotted lines represent results
obtained for θt = 0.2θ2, 0.5θ2, 0.8θ2 respectively. The dash-dotted lines show the k1-wave and
k2-wave amplitudes at the end of a monochromatic patch of width wcr1 . Physical and simulation
parameters are the same as those in figure 5.

M ∼ O(10)) and a high number of wave modes N (typically N ∼ O(10, 000). The method
was first formulated by Dommermuth & Yue (1987) and West et al. (1987) to model
nonlinear wave-wave interactions in deep water. It was then extended to the problems
of wave-topography interactions in finite depth (Liu et al. 1998; Alam et al. 2010, 2011),
two-layer density stratified fluids (Alam et al. 2009a,b), and wave-viscoelastic-seabed
interactions (Alam 2012a). The scheme has already undergone extensive convergence
tests as well as validations against experimental and other numerical results (e.g. Toffoli
et al. 2010; Alam 2012b).

5.1. Cross-validation

We compare the direct simulation and multiple-scale results of a normal-to-shore
monochromatic wavetrain impinging on a bi-chromatic patch with a y = 0 plane of
symmetry. We select the dimensionless wavenumber k1 = 110, such that 110 waves of
wavelength λ1 can fit in the numerical domain x ∈ [0, 2π[. We use the same parameters
as in figures 5 and 6(d,e,f) such that θ2 = 7π/15, θt = θ2/2, k1h = 0.2, a0/h = 10−3, and
(d1 + d2)/h = 0.12 with (4.8) satisfied. The seabed bars are laid out from x/λ1 = 0 to
x/λ1 = wcr2/λ1 = 18.3 and therefore the patch width is critical. The generation of the
initial waves coming from x = −∞, and the radiation conditions for waves leaving the
domain (at x = +∞ or y = ±∞) are enforced using a numerical wavemaker and damping
layers. This procedure significantly attenuates the additional water-wave scattering at the
lateral boundaries of the patch (which is finite in the numerical domain), such that a
good agreement can be expected between theory and direct simulation (the effect of the
patch’s finite transverse length, here in y, was studied in Magne et al. 2005).
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Figure 7. (a) Free-surface elevation η/a0 and (b) time-averaged energy (c.f. (5.1)) at the
steady-state obtained from direct simulation (upper plots y > 0) and multiple-scale analysis
(lower plots y < 0; c.f. equations (4.3)). A monochromatic wave-train incident from x = −∞
impinges on a bi-chromatic patch with parameters θ2 = 7π/15, θt = θ2/2, k1 = 110
(dimensionless), k1h = 0.2, (d1 + d2)/h = 0.12 (with d2/d1 given by (4.8)), a0/h = 10−3

(c.f. figure 2b). The seabed bars occupy the space between x = 0 and x/λ1 = wcr2/λ1 = 18.3
such that all the incident k1 wave energy transfers to the target k2 wave away from the patch’s
plane of symmetry y = 0. The direct simulation parameters are δx/λ1 = δy/λ1 = 1/9 and
δt/T1 = 1/32, and the resolution of the multiple-scale solution is the same as in figure 5. The
vertical dashed lines show the transects where we plot the maximum free-surface elevation in
figure 8.

Figure 7a shows the normalized wave elevation η/a0 when steady state is reached. The
plot is split into two parts, with the lower part (y < 0) obtained from the semi-analytical
solution (c.f. §4), and with the upper part (y > 0) obtained from direct simulation. As
can be seen, analytical and computational results endorse each other, with the same
features already described in §4 standing out: (i) the incident waves arrive unaffected
upstream of the patch from x = −∞, (ii) the complex pattern due to the three-wave
interactions over the patch becomes y-invariant away from the centerline (i.e. |y| � λ1),
(iii) two beams of k1 wave energy propagate near y = 0 downstream of the patch (one
near the center at y ∼ 0, and the other at y ∼ 15λ1), (iv) a beam of kt wave energy
emanates from the end of the patch at y ∼ ±19λ1.

The protection provided by the bi-chromatic patch can be further highlighted by
looking at the time-averaged energy

Ē(x, y) =
1

a2
0/2

∫ tf

t0

η2(x, y, t)
dt

tf − t0
, (5.1)

where the pre-factor in (5.1) is inversely proportional to the averaged wave energy that
would be obtained without the seabed bars. It should be noted that (5.1) is the first-
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order normalized wave energy, and that it includes contributions from both the kinetic
and potential wave energy, which are equal. The time integration is performed when the
system reaches steady-state with t0/T1 = 140 and tf/T1 = 170. A good agreement is
obtained for Ē in figure 7b between the direct simulation (lower half) and the multiple-
scale results (upper half). The features described for figure 7a also appear in figure 7b
and are in fact strongly enhanced (e.g. k1 and kt wave beams). The rapid variations
of wave energy are due to the formation of a standing wave pattern downstream of the
patch (e.g. along the kt wave beam direction) resulting from the superposition of k1 and
kt waves. The strongest energy reduction is about 99% (for both direct simulation and
multiple-scale) and is achieved within the stripe of width 2λ1 centered on y = ±5λ1.

5.2. Effect of detuning and protection efficiency

To quantify the effect of frequency detuning on the shore protection efficiency, we
calculate the maximum free-surface elevation η∗ = max |η|/a0 (in time) with and without
detuning along the y-axis at a virtual shoreline (no reflection considered) that is assumed
∆x = 26λ1 downstream of the patch (i.e along the dashed lines in figure 7). The incident
wave frequency is ω = ω1 + $ where ω1 is the perfectly tuned wave frequency and
$ � ω1 is the detuning parameter. The corresponding wavenumber detuning κ, such
that k = k1 +κ, is obtained from $ = Cgκ. Similar to the case of class I Bragg reflection
(see e.g. Mei 1985), we normalize the detuning frequency by the characteristic long time
scale of the system Ω12 = CgK12 (c.f. (4.7)). The normalized detuning $/Ω12 is therefore
represents the strength of detuning, which suggests that shorter waves are more strongly
affected by detuning than longer waves (a detailed analysis of detuning for a bi-chromatic
patch infinitely long in the y-direction is provided in Appendix II).

The Result of our numerical experiments on the effect of detuning is presented in
figure 8. In the absence of detuning, i.e. $ = 0, a global minimum of η∗ for both
direct simulation and multiple-scale is observed: this minimum in η∗ corresponds to
the minimum of incident wave amplitude a∗1 at the end of the patch as seen in figure
6d (dotted line at y/λ1 ∼ 6). The large standing-wave oscillations seen for y/λ1 > 25
are, as mentioned previously, due to the superposition of the leaked k1 and kt waves. Of
course, the superposition would not occur if we were to observe η∗ further downstream
of the patch since the kt beams of energy propagate progressively away from the y = 0
plane of symmetry to which the k1 beams of energy are confined. The maximum free-
surface elevation obtained from the direct simulation matches well with the multiple-scale
solution except for a small local peak near y = 0 and for the small oscillations from y = 0
to y = 25λ1, which are both due to wave energy spreading.

The effect of detuning on the maximum free-surface elevation is strongest away from
the y = 0 plane of symmetry. There still is a global minimum near y = 0 for $/Ω12 = 3.7
but η∗ reaches a unitary value (which corresponds to no wave amplitude reduction) near
y = 15λ1 with oscillations farther out to the sides again due to the superposition of k1

and kt waves. The wave-field away from y = 0 changes radically because the second
interaction of the two-steps Bragg resonance mechanism, which is key to reducing the
incident wave mode energy far from the plane of symmetry, is more strongly impacted
than the first Bragg interaction. The fact that detuning affects the successive Bragg
interactions cumulatively is shown in Appendix II (figures 12,13) for an infinitely long
patch.

Quantitative differences between direct simulation and multiple-scale results are in
general expected and obtained here in figure 8 because multiple-scale neglects higher-
order wave-bottom interactions, wave-wave nonlinearities, and bottom discontinuities
(obtained at the beginning and end of the patch), which can produce evanescent modes.
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Figure 8. Effect of detuning on the normalized maximum free-surface elevation η∗ = max |η|/a0
at a distance ∆x/λ1 = 26 downstream of the patch (i.e. along the dashed lines in figure 7).
The wavenumber for which the patch is designed is k1 = 70 and the detuning parameter is
$/ω1 = 0 for the lower two curves and $/ω1 = 0.1 (or $/Ω12 = 3.7) for the upper two
curves. Other physical parameters are as in figure 7. The direct simulation (HOS) parameters
are δx/λ1 = δy/λ1 = 1/7.3 and δt/T1 = 1/32, and the resolution of the multiple-scale solution
(MS) is the same as in figure 5. Detuning clearly results in a larger maximum wave amplitude
downstream of the patch.

For instance, resolving accurately subharmonic resonances due to multiple bottom com-
ponents, which could be of significance in the case of large detuning, requires theories
that include higher-order wave-bottom interactions (c.f. Guazzelli et al. 1992; Yu &
Howard 2012). Despite the simplifying assumptions of multiple-scale analysis, we see that
the comparison in figure 8 is good almost everywhere in the domain, with or without
detuning. The small discrepancies between the two methods is of course higher for the
detuned waves, which is consistent with the fact that multiple-scale performs best at
perfect resonance, i.e. in the absence of detuning.

To further assess the efficiency of the Bragg deflection mechanism, as well as how it is
affected by detuning, we now define a protection efficiency variable P, where

P(x, y) = 1− 1

y

∫ y

0

Ē(x, τ)dτ. (5.2)

The protection efficiency P measures the y-average wave energy reduction (with Ē
obtained at steady-state and given in (5.1)) on a line parallel and downstream of the
patch’s trailing edge. Figure 9a shows P over a relatively large domain, i.e. from y = 0
to y = 350λ1, with Ē evaluated at the distance ∆x = 26λ1 downstream of the patch.
Figures 9b is a close-up with direct simulation results (dashed lines), to show that the
multiple-scale predictions are reasonably accurate, even with 10% detuning.

The protection efficiency P for perfectly tuned waves (i.e. $ = 0) is as high as 88%
at y = 270λ1, meaning that only 12% of the incident wave energy makes it inside the
protected wake behind the patch. From y ∼ 270λ1 farther out to the sides, P starts
decreasing because the deflected k2 waves, which captured most of the incident wave
energy, propagate within the semi-infinite space y > x/ cos θ2 outside of the protected
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Figure 9. (a) Protection efficiency P (5.2) with and without detuning
($/ω1 = 0, 0.01, 0.03, 0.05, 0.1 which corresponds to $/Ω12 = 0, 0.37, 1.1, 1.8, 3.7) at a
distance ∆x = 26λ1 downstream of the patch (i.e. at x = wcr2 + 26λ1, which is along the
dashed line in figure 7). The results are obtained from multiple-scale analysis. (b) Close-up with
direct simulation results added for $/ω1 = 0, 0.1 (dashed lines). The physical and simulation
parameters other than $ are the same as those in figure 8.

wake, which includes the half line y > 270λ1 > 26λ1/ cos(7π/15). As already discussed,
the protection efficiency decreases rapidly with an increase in $ away from y = 0 since
the two-step Bragg deflection mechanism is quite sensitive to detuning. Detuning affects
transmitted waves (as in Bragg deflection) more strongly than reflected waves, because
transmitted waves have an oscillatory behavior over the corrugations: detuning not only
diminishes wave-bottom interactions but also changes the critical patch width where the
incident wave amplitude reaches a minimum. Nonetheless, we can see that significant
wave amplitude reduction is still achieved over a large domain with some small detuning.

5.3. Perpendicular deflection

In this section we investigate numerically the special case of shore-normal incident
waves (with wavenumber k1 = k1x̂) being deflected by 90 degrees into shore-parallel
resonated waves (k2 = ±k2ŷ, c.f. figure 2b). Assuming perfectly tuned incident waves,
we first show in figure 10 that the averaged wave energy (5.1) is significantly decreased in
the wake of such a patch. A bi-chromatic patch can therefore deflect incident waves to the
shore-parallel direction, and offer shore protection near the patch’s plane of symmetry.
The physical parameters in figure 10 are the same as those in 7 (except for θ2 = π/2
in figure 10), such that the patch width in figure 10 is not critical. Nonetheless, wave
reduction is obtained in the wake near the patch’s plane of symmetry regardless of its
width.

Far from the plane of symmetry where the solution is expected to be y-invariant,
the synchronization condition (4.8) suggests that the bi-chromatic patch should be
turned into a monochromatic patch since we get d2/d1 → 0 when θ2 → 0. However,
as was mentioned earlier, the degeneracy of the Bragg resonance condition prevents a
monochromatic patch from deflecting incident waves by a θ2 = π/2 angle. Therefore the
solution (4.4) is not valid for perpendicular deflection and we should still consider a bi-
chromatic patch (with d1,2 6= 0). Let us now suppose that the envelope amplitudes need
not be continuous at the patch boundaries, i.e. at x = 0 or x = w. Then, the steady-state
(∂/∂t̄ ≡ 0) y-invariant (∂/∂ȳ ≡ 0) solution of equations (4.3) with θ2 = π/2 is obtained
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Figure 10. Time-averaged energy Ē (c.f. (5.1), t0/T1 = 140, tf/T1 = 170) obtained from
direct simulation for a patch with a plane of symmetry at y = 0. The physical and simulation
parameters are identical to those in figure 7 except for the deflection angle which is now set to
θ2 = π/2. The energy distribution is symmetric with respect to the y = 0 axis which is why we
only show the upper half plane y > 0. The red lines show the extent of the corrugated patch in
the x direction.

as

A1 = a0, At = 0, A2 =
d1 cos θt

d2 cos(θ2 − θt)
a0. (5.3)

The incident wave amplitude in (5.3) is found to remain unchanged over the patch,
which is in agreement with the conservation of wave action (4.5). If (5.3) is correct,
then, a bi-chromatic patch set to deflect waves by a 90◦ angle cannot be expected to
protect the shore far from the patch’s plane of symmetry. This result is now validated
in figure 11 as we show the evolution in time of the envelope amplitudes over a patch
infinitely long in the y-direction (and therefore the solution is independent of y) and
for which θ2 = π/2. We provide three different cases of ripple amplitudes, i.e. d1/d2 =
0.5, 1, 2 (see figures 11(a,b,c)), in order to verify the linear relationship predicted in (5.3)
between the amplitude of the deflected waves |A2| and the ratio d1/d2. The incident and
resonated envelope amplitudes are obtained from direct simulation and are extracted
from the overall free-surface solution by fast-Fourier transform in the y-direction. We
then also average in time over the carrier wave period (i.e. T1) in order to remove the
fast oscillations of the carrier wave phases. It should be noted that the wave amplitude
is 0 for all three modes for t < k1(x − xw)/ω in figure 11 since the incident waves start
propagating into the domain through the wavemaker on the left-hand-side (at x = xw)
only at t = 0.

In all cases, we see that the k1↔kt Bragg interaction is strongest at the initial time:
|At| increases very rapidly to the detriment of |A1| (figures 11a,b in the left and middle
columns). The duration and significance of energy transfer from the k1 to the kt waves
increases with increasing d1/d2 (i.e. from figure 11a to 11c), which is expected because the
strength of the k1↔kt Bragg interaction is proportional to d1 cos θt. Energy exchanges
still occur at later times, as seen from the small oscillations of |At|, but the incident wave
energy eventually becomes fully transmitted such that |A1| is as large downstream and
upstream of the patch (i.e. |A1|/a0 ∼ 1 at the end of the patch). The k2 wave amplitude
|A2| also only increases early on, with some redistribution clearly seen across the patch
at later times for the smaller d1/d2 (figure 11a to 11c in the right column). In particular,
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we find that the plateau reached by the x averaged |A2| amplitude grows approximately
linearly with d1/d2, which means that (5.3) is a good first-order approximation to the
y-invariant problem. That the initial net energy flow from |A1| to |A2| increases linearly
with d1/d2 (note that the color map scales change between figures) is somewhat surprising
since larger d1 imply smaller d2, hence weaker kt↔k2 Bragg interactions. However, since
k2 waves are trapped by the patch for θ2 = π/2, they experience an infinite number
of Bragg interactions for an infinitely long patch in the y-direction. The second Bragg
interaction is therefore intrinsically much more efficient than the first k1↔ kt Bragg
interaction, which becomes the limiting mechanism in the overall transfer of k1 wave
energy to the k2 waves.

To summarize our results on perpendicular deflection, we found that the case of θ2 =
π/2 offers significant wave energy reduction in the downstream near the patch’s plane
of symmetry. However, no protection can be obtained when θ2 = π/2 far from the
patch’s plane of symmetry, because the conservation of wave action requires waves in the
downstream propagating with a non-zero velocity in the x-direction. How much far away
from y = 0 we get the y-invariant behavior is therefore of significance importance and
can be estimated, to a good first-order approximation, by inspection of the steady-state
solution (5.3). Indeed, the far-field is expected to start where the deflected wave amplitude
|A2| obtained for a patch with a plane of symmetry becomes as large as the y-invariant
solution (5.3), i.e. at a distance |y| > 0 such that |A2(y)|/a0 = (d1 cos θt)/[d2 cos(θ2−θt)].
For the results of figure 10, we find that |A2| increases approximately linearly with |y|.
We estimated the growth slope to be ∼ 0.02 per wavelength λ1, such that the maximum
value predicted by (5.3), i.e. |A2|/a0 = 3.4, is reached at y/λ1 = 160 in this case.

6. Conclusions

The deflection of water waves incident on a patch of oblique seabed bars has been
investigated via multiple-scale analysis and direct simulations. The Bragg deflection
mechanism is reliable for protecting natural coastlines, unlike the Bragg reflection mech-
anism, since all waves are transmitted and therefore unable to become trapped between
the shoreline and the protective patch. The proposed patch of seabed corrugations for
shore protection has a plane of symmetry at y = 0 (the y-axis is parallel to the incident
wave crests, see figure 2), such that incident waves propagating in the upper half plane
y > 0 (resp. y < 0) are deflected toward y = +∞ (resp. y = −∞). At resonance, i.e. when
the incident wave frequency is equal to the Bragg frequency of the corrugated patch, the
deflection of the incident waves to the sides of the patch’s plane of symmetry results in
a wake of decreased wave activity which is like an isosceles triangle. The extent of the
protected wake in the y direction grows linearly with x (which is the direction of incident
wave propagation), and can be theoretically infinite provided that the patch is likewise
infinite in the y-direction. In one case, we achieved 88% wave energy reduction in a large
protected wake, i.e. in an isosceles triangle with 2θ2 = 14π/15 vertex angle. The vertex
angle is twice the angle of the Bragg resonated wave (θ2) formed with the x-axis.

The deflection of waves at or close to a 90◦ angle is impossible using mono-modal
corrugations because the Bragg resonance condition is degenerate in this case. However,
using bi-modal corrugations, we showed via multiple-scale analysis that the deflection of
incident waves at a large angle is achievable provided that a transitional wave mediates
the energy transfer from the incident wave mode to the target deflected wave. The
corresponding resonance mechanism was referred to as a class I2 Bragg resonance since
it is a first-order two-step Bragg interaction which requires bi-modal corrugations. We
derived closed form solutions for the incident and deflected waves assuming that the
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Figure 11. Evolution of the envelope amplitudes |A1,t,2|/a0 in x and t for waves incident from
x = −∞ and propagating over an infinitely long patch in the y-direction with θ2 = 2θt = π/2.
We consider three different distributions of ripple amplitudes: (a) d1/d2 = 0.5, (b) d1/d2 = 1,
(c) d1/d2 = 2, and keep (d1 + d2)/h = 0.12 fixed. The results in the right column demonstrate
that |A2| increases approximately linearly with d1/d2. The patch width is w/λ1 = 17.5 and the
other physical parameters are k1h = 0.2, a0/h = 10−3. The direct simulation parameters are
δx/λ1 = δy/λ1 = 1/7.31 and δt/T1 = 1/32.

envelope amplitudes were invariant in the y-direction. The results allowed us to obtain
the critical patch width, i.e. the patch width in the x-direction that ensures that the
energy of the incident wave is fully transferred to the deflected wave.

The critical patch width has been shown to be the optimum design width for a patch
with a plane of symmetry set to minimize wave activity in the target protected wake. The
plane of symmetry only affects the modal wave amplitudes near the axis of symmetry and
the y-invariant solution is recovered away from it. The wave-field in the protected wake
is dominated by leaked beams of energy emanating near the patch’s plane of symmetry.
High-order spectral simulations of the full potential flow equations over a relatively large
domain were shown to agree well with the results obtained from multiple-scale analysis.

The protection efficiency of the class I2 Bragg deflection mechanism has been shown to
be relatively robust to small frequency detuning. The effect of detuning, nevertheless, has
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a cumulative effect for class I2 since the secondary Bragg interactions are more strongly
affected than first-step interactions. As a result, detuning has a stronger negative effect
on the protection efficiency in the case of the class I2 (bi-chromatic patch) than in the
case of class I (a monochromatic patch). For incident waves propagating at an angle
with respect to the normal-to-shore direction, the wavenumber vector can be written as
k1 + κ(x̂ cosβ + ŷ sinβ) where k1 is the Bragg resonant wavenumber. We thus see that
the effect on the protection efficiency of small oblique incidence (which implies κ� k1),
generally negligible nearshore due to refraction, is similar to that of frequency detuning
(c.f. Kirby 1993).

In the case of perpendicular deflection, when the incident and final resonated waves
are perpendicular, we found that the incident wave energy stops flowing to the deflected
waves far from the patch’s plane of symmetry after relatively short transients. As a result,
the protection offered by a patch set to deflect waves at a 90◦ angle is of limited extent
in the y-direction, and restricted to the neighborhood of the patch’s plane of symmetry.
Perpendicular deflection also results in leaked waves, which, once reflected by a shoreline,
can excite waves propagating along the patch in a way that water-wave trapping becomes
again possible. This is, of course, an undesirable feature as explained by Yu & Mei (2000a)
for the case of shore-parallel seabed bars. The formation of waves that propagate parallel
to the patch may be, however, relevant to the analysis of topographically-trapped waves,
aka Bloch waves, as the excitation of such waves by free modes remains of contemporary
interests (c.f. Porter & Porter 2001).

While longshore natural sandbars can survive under natural wave loading conditions
(as shown by e.g. Yu & Mei 2000b; Kriebel & Dean 1985), oblique sandbars may prove to
be more fragile. The possibility to observe the class I2 Bragg interaction in the natural
environment as well as the survivability of man-made protective patches based on oblique
seabed bars thus call for appropriate erosion and dynamic loads studies.

Appendix I

The evolution of the incident and resonated wave amplitudes A1,t,2 over a bichromatic
patch with corrugations ζ given by (4.1) can be found using multiple scales by considering
a first-order potential φ(1) of the form

φ(1) = α1(z)ei(k1·x−ωt) + αt(z)e
i(kt·x−ωt) + α2(z)ei(k2·x−ωt) + cc, (6.1)

where

αj(z; x̄, ȳ, t̄) =
Aj(x̄, ȳ, t̄)

2

g

ω

cosh[k1(z + h)]

cosh(k1h)
, j = 1, t, 2. (6.2)

The equation for A1,t,2 can then be obtained from the solvability condition which ensures
that a bounded second-order potential of the form

φ(2) = ψ1(z)ei(k1·x−ωt) + ψt(z)e
i(kt·x−ωt) + ψ2(z)ei(k2·x−ωt) + locked waves + cc, (6.3)

satisfies the second-order problem. In (6.3), the slow variations of the amplitudes ψ1,t,2

only affect the third-order solution and, as a result, they can be neglected in the present
derivation. The expression locked waves designates non-resonating terms of the second-
order solution which do not play any role in obtaining the evolutionary equations for
A1,t,2. At the second order O(ε2) in bottom steepness, the governing equations obtained
neglecting wave-wave interactions read

∇2φ(2) + (∇h · ∇̄+ ∇̄ · ∇h)φ(1) = 0, in − h 6 z 6 0, (6.4a)



22 L.-A. Couston, M. A. Jalali & and M.-R. Alam

φ
(2)
tt + gφ(2)

z + 2φ
(1)
tt̄ = 0, on z = 0, (6.4b)

εφ(2)
z = −ε∇̄h · ∇hφ(1) +∇h · (ζ∇hφ(1)), on z = −h, (6.4c)

where ∇̄ = (∂x̄, ∂ȳ). In (6.4a), we note that ∇̄ and ∇h do not commute because of the
simultaneous fast and slow spatial variations of the wave phases. Substituting (6.1) and
(6.3) in (6.4) we have for each wave mode, i.e. for j = 1, t, 2,

ψj,zz − k2
1ψj = −i

[
∇̄ · (kjαj) + kj · ∇̄αj

]
, in − h 6 z 6 0, (6.5a)

− ω2ψj + gψj,z = 2iωαj,t̄, on z = 0, (6.5b)

εψj,z = γjmαm − iε(∇̄h) · (kjαj), on z = −h, (6.5c)

where Einstein summation is implied for repeated indices and with γ11 = γ12 = γtt =
γ21 = γ22 = 0, and γ1t = γt1 = −(d1/2) k1 · kt, γt2 = γ2t = −(d2/2) kt · k2. Since the
αj are the homogeneous solutions of (6.5), the forced system (6.5) admits non-trivial
solutions ψj if and only if a so-called compatibility condition is satisfied (Fredholm 1903;
Mei 1985). Applying Green’s second identity, with asterisks denoting complex conjugates,
the solvability condition can be cast into∫ 0

−h
dz
[
α∗j (ψj,zz − k2

1ψj)− ψj(α∗j,zz − k2
1α
∗
j )
]

=

[
α∗j
∂ψj
∂z
− ψj

∂α∗j
∂z

]0

−h
, (6.6)

which, after some manipulations, reduces to a system of coupled partial-differential
equations for the slowly varying wave envelopes, i.e.,

A∗j ε
∂

∂t̄
Aj +

1

2
A∗j ε∇̄ · (CgjAj) +

1

2
A∗jCgj · ε∇̄Aj = iA∗j

 AtΩ1, j = 1
A1Ω1 +A2Ω2, j = t

AtΩ2, j = 2
(6.7)

with Cgj , and Ω1 and Ω2 given in (3.4) and (4.4). Summing all three partial-differential

equations (6.7) together with their complex conjugate counterparts yields the well-known
conservation law of wave action, i.e. equation (4.5). Equation (6.7) can then be readily
simplified into equation (4.3) by dividing by A∗j . Equation (6.7) (or (4.3)) further reduces
to equations (2.33)-(2.34) of Mei (1985) for a single bottom corrugation (d2 = 0⇒ Ω2 =
0) and upon substitution of (A1, At) with (A+,−A−).

Appendix II

The effect of detuning on the modulation of the envelope amplitudes is here investigated
for an infinitely long patch in the y-direction. We solve the multiple-scale system of
equations (4.3) analytically assuming ∂/∂ȳ = 0 and replacing ∂/∂t̄ by −i$ where ω =
ω1 +$ is the incident wave frequency and $ is the detuning frequency. Figure 12 shows
the normalized wave amplitudes for different detuning parameters. With no detuning
(solid lines), we see that the k1 wave energy is fully transferred to the k2 wave mode at
xn = (2n+1)wcr2 for every n ∈ N (c.f. (4.6) with (4.8) satisfied). With detuning, however,
full energy transfer cannot be achieved because (4.8) is no longer satisfied, the critical
patch width changes, and the Bragg interactions are weaker. Interestingly, detuning first
results in an increase of energy flowing to the transitional mode kt. Indeed, detuning
affects more importantly the second interaction of the 2-step Bragg mechanism, such
that more energy can be stored into the kt waves. For larger detuning, however, both
the first and second interactions weaken such that the incident wave amplitude becomes
barely affected by the corrugations. Figure 13 finally shows the minimum of a∗1, as well as
the maximum of a∗t and a∗2, as a function of $/ω1 for different parameters k1h. Clearly,
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Figure 12. Normalized envelope amplitudes of the (a) incident, (b) transitional and (c) target
modes over a bi-chromatic patch infinitely long in the y-direction with no detuning ($ = 0, solid
lines), some detuning ($ = 0.01ω1 or $ = 0.66Ω12, dash-dash lines), large detuning ($ = 0.1ω1

or $ = 6.6Ω12, dash-dot lines). The physical parameters are k1 = 70, θ2 = 7π/15, θt = θ2/2,
k1h = 1, a0/h = 10−3, (d1 + d2)/h = 0.12, with (4.8) satisfied.
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Figure 13. Minimum of the normalized incident wave amplitude a∗1 and maximum of the
normalized resonated wave amplitudes, i.e. a∗t and a∗2, as a function of detuning $/ω1 where
ω1 is the perfectly tuned wave frequency, for a patch semi-infinitely wide in the x-direction and
infinitely long in the y-direction. The results are shown for both relatively long (i.e. k1h = 0.2,
solid lines) and short (i.e. k1h = 1.5, dash-dash lines) waves. The effect of detuning is clearly
stronger for the shorter waves. Other physical parameters are as in figure 12.

as mentioned in §5.2, the parameter $/ω1 has a stronger effect on short waves than on
long waves, and the second resonated mode a∗2 is more affected than the transitional
mode a∗t .
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