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ABSTRACT

Similar to the mechanism by which a visco-elastic mud
damps the energy of overpassing surface waves, if the meae-s
seafloor is carpeted by an elastic thin material attacheddn-g
erators (i.e. dampers) a high fraction of surface wave eperg
can be absorbed. Here we present analytical modeling of the
flexible carpet wave energy converter and show that a high effi
ciency is achievable. Expressions for optimal damping difid s
ness coefficients are derived and different modes of osoills
are discussed. The presented wave energy conversion stheme
completely under the water surface hence imposes mininmal da
ger to boats and the sea life (i.e. no mammal entanglemend). T
carpet is survivable against high momentum of storm surges a
in fact can perform well under very energetic (e.g. storngg s
conditions, when most existing wave energy devices areedeed
to shelter themselves by going into an idle mode.

I am honored to be a colleague of Prof. Ronald Yeung at
the University of California, Berkeley. He is a world renceeh
scientist of ship hydrodynamics with several valuable aeg k
contributions to the field. This manuscript on a new oceanevav
energy extraction scheme is due to Ron’s recent interedten t
field of ocean renewable energy. | am looking forward to years
of working closely with him. Thank you Ron.

INTRODUCTION

Gade (1) reports a place in the gulf of Mexico known to lo-
cals asmud holewhere due to the accretion of mud banks has
turned into, for the local fishermen, a safe haven againshgtr
waves during storms. Within the mud hole the interactioruof s

1

face waves with the mud is very strong such that waves com
pletely damped out within a few wavelengths (2). Observetio
of strong wave damping due to the coupling with the bottom muc
is not limited to the gulf, but almost anywhere with a muddy
seafloor (e.g. 3; 4; 5).

If mud can take a substantial energy out of incident surface
gravity waves, an artificial carpet deployed on the seabaitr¢h
sponds to the action of the overpassing waves in the samesvay
the response of a mud-layer must be able to extract the san
amount of energy. Analysis of performance of this synthetic
seabed-carpet wave energy conversion technique is thecsubj
of this article.

The complicated nature of the seafloor mud and the wide
range of mechanical/material properties which may be ionat
and even time dependent, has aroused a great deal of research
this subject in the past. For understanding wave-mud iotierss
several models have been incorporated including, but mated
to, Newtonian (6), non-Newtonian (7; 8), viscoelastic (9),1
porous (11), poro-elastic (12), and bottom friction (13)eTcor-
rect model in general is yet a matter of dispute (14; 15), how-
ever, under the periodic forcing a viscoelastic model hanbe
shown to be a very good approximation and is now widely usec
(16; 17). While the general idea presented here can incatgor
any mud model, for specificity, we focus our attention on adin
viscoelastic model.

In this paper we consider a seabed-carpet composed of ce
pet mass attached to sets of vertically acting linear sprargl
generators, with the generator’s action modeled to be fiyea
proportional to the vertical speed. We show that the couplet
governing equation of waves/carpet system admits two mode
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Figure 1. Schematic of the configuration considered in this paper. A
visco-elastic carpet is mounted on the seafloor that extracts energy from
overpassing surface waves. The carpet (with distributed mass M) is
restricted by distributed springiness and damping coefficients of kK*, b*
respectively.

of propagating wave solutior§1): a surface mode wave whose
frequency and wavenumber in the limit of deep water tend
to the frequency and wavenumber of free propagating surface
gravity waves, and a bottom-mode wave whose frequency is
much higher (for a relatively stiff bottom) or much lower (fo

a relatively flexible bottom) than the surface wave of the sam
wavenumber. For a surface-mode the higher the wavelerggh, t
higher the energy extraction by the bottom. This is in agree-
ment with most observations of long waves damped by the bot-
tom mud (7). For a bottom-mode wave, however, the energy
extraction increases as the wavelength decre&2e3)( Aside
from attractiveness of this feature of a bottom-mode wave fo
the wave energy community, it may also provide an explanatio
for the recent observation (yet unexplained) of strongtsave
damping by (5)(see also 18).

Since the idea presented here is more efficient in shallow
waters, and since due to shoaling the effect of nonlinearity
creases in shallower depths, we further formulate the weak n
linear problem for long wave$8). Governing equations up to
second order are presented and discusses are provided.

The presented wave energy conversion device is completely
under the water surface hence imposes minimal danger ts boat
and the sea life (i.e. no mammal entanglement). The carpet is
survivable against high momentum of storm surges and in fact
can perform even better under very energetic (e.g. storeg) s
conditions, when most existing wave energy devices areatted
to shelter themselves by going into an idle mode. The prapose
idea and its variations may also be used to create localafed s
havens for fishermen and sailors in open seas, or if implezdent
in large scales to protect shores and harbors against stomg
waves.

1 Governing Equation

We consider the irrotational motion of a homogeneous invis:
cid incompressible fluid with a free surface over a flexibleea
placed at the mean bottom= —h. Linearized governing equa-
tions ignoring surface tension is

D?9=0 (1.1a)
@ +99,=0 @z=0, (1.1b)
@®—N,t=0 @z=—h, (1.1¢c)
M N1t +bNye +k'N,+P =0 @z=—h, (1.1d)
(ﬂ+gﬂb+%=0 @z=—h. (1.1e)

wherem*, b* andk* are respectively mass, viscous damping and
stiffness coefficient per unit length. The combination & thst
three boundary conditions (1.1c)-(1.1e) give

M@zt +b* @z + (K —pg)@:—pePy =0 @z=—h (1.2)

General solution to the Laplace’s equation (1.1a) is

o= (Aé‘z+ Be*kz) g(loeat) (1.3)

where upon substitution into the free surface boundary itiond
(1.1b) yields

gk— w?

B:Agk+u)2

(1.4)

and from (1.2) we obtain

(M+ R tanhw) Q? + 2ipl QpQ° — u(QZ + ptanhy)Q?
—2ip2ZQpQtanhu+ p?(Q2 — % )tanhu=0, (1.5)

which is the dispersion relation in terms of dimensionlems-v
ables

ph b*
Q:(A)\/h = — =
/7 R m*v Z 2\/k*—7

k*
p=kh Qp= \/E h/g.

whereQ is the dimensionless frequency, is the ratio of the
mass of fluid above to the mass of the carpet (for a given area
( is dimensionless damping ratijpjs shallowness an@y, is the
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dimensionless bottom natural frequency (in the absenceiiof fl
on top). Note that limiting cases & — o andm* — o are
equivalent of a rigid bottom and (1.5) readily reduces tofthe
bottom dispersion relation.

In the limit of deep water|(>> 1) equation (1.5) is further
simplified to

(Q2— ) [(H+ R )Q% + 2 QQ + (& — QF)] =0. (1.6)

The first parenthesis shows the asymptotic convergenceeof th
surface-mode to the deep water wave dispersion relatiotewhi
its damping goes to zero.

The first parenthesis is simply the dispersion relation efxde
water waves. Clearly bottom damping has no effect on waves in
this mode. The second parenthesis is the dispersion nelafio
what we call thecarpet mode We will show later that in this
mode, converse to the surface mode, effect of damipicrgases
as the water depth increases. For stable propagating wiaves,
to have non-growing results, we need to always Ha@) < 0
(c.f. (1.3)). For this to satisfy in (1.6) it can be shown thas
necessary to have

Q< R. 1.7)

In physical space this requirement is equivalenit'tc- pg and
means the restoring force acting on any perturbation ondhe c
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Figure 2. (a) Roots of the dispersion relation in the absence of damping

pet has to be higher than the weight added to the carpet due to(¢ =0)- Parameters are & = 1000and Qp, =32. Plotted are roots of

that perturbation. Under condition (1.7) and in the absefce
the dissipation (i.e.{ =0) equation (1.6) has two pairs of real
solutions (c.f. fig. 2a): the surface wave mode for which sur-
face amplitude is higher than carpet amplitude but surfack a
bottom undulations are in phase, and, the carpet mode fahwhi
bottom amplitude is higher but surface and bottom undulatio
havertradian phase difference (fig. 2b). fAs— o surface mode
frequencyQs increases proportional Qs [ /fi while carpet
mode frequency. asymptotically tends t®c., 0 (QZ — R).
Also from (1.5) in the limit of{ = O,u = 0 it can be shown
that Qg = Qp/v1+ R, therefore no wave with the frequency
(Q2—R) < Q < Qp/v/I+Rcan exist. The band-gap is shaded
with gray in fig. 2a.

Now let's consider the case whefez 0. In this case and if
bottom-mode roots of (1.6) are sought, it can be further show
that a bifurcation in behavior occurs at a critical dampiaitior

Zo - wnx_xuw
cr m% .

For { > (¢ and for any givernu we obtain tha) = ixg,ixo
wherexy, X € R7, X1 # Xo. If { < {¢r thenQ¢ = ixs + x4 where

(1.8)

(1.5)(—), and (1.6) (- - -). Shaded region is the band-gap for which
corresponding frequencies do not exist. (b) Ratio of bottom to surface
amplitudes ab/as for which the same notation as in (a) is used.

X3,X4 € R™. Clearly at{ = { the oscillatory motion of the
bottom-mode diminishes and waves decay exponentiallyrtm ze

Real and imaginary part of the solutidd of (1.5) for a
fixed £ =1000, Qp=0.32 and{=1.7,3.4 are shown in figure 3,
along with the bottom to surface amplitude ratios and dedpwa
asymptotes.

The real part of frequency of surface mode wave&s),
experience minimal change compared to the undamped case. T
imaginary part of a surface mode wa&Qs), starts from a fi-
nite negative value (corresponds to finite decay rate) ayhas
totically decreases to zero as waves get shorter. This is e
pected and in agreement with existing theories and obsengat
of stronger long wave (compared to short wave) damping. The
behavior of the bottom mode waves are however more comple;
As explained earlier roots of the bottom mode bracket of)(1.5
show a bifurcation at a critical (dimensionless) depth.
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2 Approximate damping rate

we consider wave in a homogeneous fluid bounded by pe-
riodic side-boundary conditions, free surface and a vilestic
bed. In two dimension, the governing equation for the boti®om

m'Ap+ b Np+k'Np = p(t) (2.9)

wherem*, b* andk* are mass, damping coefficient and stiffness
coefficient of the bottom per unit length per unit depfiit) is
the pressure at the mean bottam —h.

If pressure is periodic in time, say(t) = focoqwt), the
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Figure 4. Real and imaginary branches of the solution Q(p.) to the dis-
persion relation (1.5)for ® = 100Q Qp = 0.32and { = 1.7 (left col-
umn) and { = 3.4 (right column). Also plotted is the ratio of the bottom
amplitude to the surface amplitude. Dashed curves are branches asso-
ciated with the surface mode and solid curves are associated with the
bottom mode. Note the bifurcation at Pey=3.62 and pler=1.23 (c.f.(1.8)).
Branches of deep-water asymptotes (1.6)are also plotted for comparison

G- ).

solution to this ordinary differential equation is well kmo

Po
Np = cogut — @) (2.10)
[(k* — mra?)2 + b2 2] 2 o
where the phase shift is given by
b*w
_ —1
@=tan (7k*—m*w2) (2.11)

The power loss per unit horizontal length due to the dampfng o
the bed is

Pow(x,t) = b* A = p(t) Nb (2.12)
and the time average power loss is given by

-~ 1 bpo’w?

Pov = 3 k=2 (b @19

For a monochromatic progressive wave, this is the power los
per unit length. For standing wave, the power loss is halhif t
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value due to another averagin over the wave length thatdotre erning equations of waves over time-dependent bottom &ngiv
a factor of one-half.

The energy contained in one wave-length of a progressive M2@=0 _h(xt) < < s (3.22a)
wave
Nst +Nsx@®x = @z Z=1ns (3.22b)
. @t + 3(09?+gns=0 zZ="ns (3.22¢)
n= as'n(kx_H((’zt)Jr h) (2.14) —hi—hxox =0z z=—h(xt) (3.22d)
__agcoshk(z B
0= costkh cogkx— wt) (2.15)

where—h = —hg + np andhg is the average bottom depth. The
following scales are introduced to dimensionless the gomgr

is equations
E;\:}pgaz)\ (2.16) X =KX, z’zi, t’ = ky/ghot, r]/S:E, ng:@,
2 ho a a
khy h P
§=—=0¢ hN=— P=—1 (3.23)

or Ew = 1/2pga? per unit length (see for example 19, section avgho ho Pgho
2.2). Note that the energy of standing wave is half of propiaga
wave with the same amplitude and wave number. wherek, a andg are respectively the characteristic wave-number,

Pressure at the mean bottom is characteristic amplitude and the acceleration gravityRistthe

pressure. Upon substitution into the governing equatifey a
dropping prims we get

p(xt) = —ple; +94 @z=-h (2.17)
a
- copng<h sin(kx— wt) + pgh (2.18) H@xx+ Pzz=0 _h<z<ens (3.242)
K2 (Nst + ENsx®x) = @z z=gens  (3.24b)
2 1o _ _
The first terms is the dynamic pressure due to the presense of H (@t +Ns)+ z&(K @+9) =0 z=¢ns (3.24¢)
the wave hence decreases as depth increases. At the limit whe —12(hy +ehx@x) = @7 z=—h (3.24d)

kh < 1 the hydrostatic pressure of shallow water wave is recov-

ered. The second term is just the hydrostatic pressure due t0\yhere
the water column and only changes the set point of our mass-
spring-damper system and therefore does not play any rithein

a

damping process. To find the rate of amplitude decay we write H=khh <1, €= h € 1 (3.25)

dEv da . ct are indicators of the shallowness and the nonlinearityeesp

dat P = dt —Ca —a=ae (2.19) tively. The ratio of nonlinearity to the shallowness

co_ 1 . P (550

2cosffkh [(k"—ma?)2+ (b'w)?] U= — (3.26)
~ r——,2 .
1 2(kQ 3

= . - W 2.21
2cosifkh [(1—Q2)2+(22Q)?] (2.21)
is called the Ursell's number. We assume a solution in thefor

wherek = pg/k* ®
0= Z[H h(x,)]"@h(x,y) (3.27)

3 Nonlinear Shallow Water

The idea presented here is more likely to be employed in a
shallow water regime. For this purpose in this section wévder
weakly nonlinear shallow water equations governing waeppr _ 2 Chaxt 2(n+1)hx@niix+ (N+ 1)h,xx(Pn+1,3 28)
agation over a visco-elastic bottom carpet. Full nonlirgar- P2 =M (N+1)(n+2)[1+ p2h3] =

From Laplace’s equation i.e., equation (3.24a) we have
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and the boundary condition equation (3.24d) gives position of the bottom where spring resists the pressurgilbf s
waterpghy. In dimensionless form

1 ht+£hxqu
RV EaT (3.29)
ro 1+pehg A1Nbgt + 02Npt + (03— 1)Np = —Ns (3.37)
AssumingU; = O(1) andh = 1 — pnp(x,t) wherea > 1, we where

concludeO(hy = O(hx) = O(p*) < 1 after some algebra we get
to the final equations correct to the ordei@(is?) = O(e):

km b* k*
O1=p—, Op2=H——, O3=—. (3.38)
p PY
Hy+e(HU) x=0 (3.30) pvah
2
Ut + EUUy + Nsx — u—lIxxt +f(xt)=0 (3.31) Now we introduce two space variabbeandX = p?x and expand
30( Ns, Np andu in power series as follows
P = (ens—2) + O(gl") (3.32)
where Ns(X, X;t) = N+ Kons1 + O(H ‘L) (3.39)
NMb(X, X;t) = Npo + H2Np1 + O(K*) (3.40)
N ens X;t) = o 3.41
s = h+ens, u:%/ xdz (3.33) U0 Xit) = o+ 1 +O(kt) (3.41)
~h

upon substitution into equation 3.35, the perturbatiora¢iqus
are the total depth from the free surface and the depth a®erag are obtained

velocity, and

1
N0t — Nsoooc— 5 Nbot = 0 (3.42)
r

1 1
f(x,t) = hxhg + éf"[,th,xt - 55{ it — }[,xh,tt:|

1
Ur 1
Nsitt — Nixx— _r]bltt = £{(UpUox) x — (NsoUo) xt }

= o5 [ Mot + K2 (NbNbxt — NoNbxat)]  (3.34)
r

when the bottom is not a function of time, equations (3.3@) an
(3.31) reduce to equations (12.1.47) and (12.1.48) of (26) w
the assumption of small amplitude topography. Close to tie b
tom, the error in the pressure term dropi@p®®).

Assuminga = 2, i.e., the bottom variation is as big as
the surface perturbations, we can combine equations (ar8D)
(3.31) to get

+ uz{ 2Nsxx + (NboU) xt
i,
3

1
N mﬂbomt} (3.43)

Using equation (3.37) zeroth order equation (3.42) can liteanr
in terms of a single variablgy

a1 (Nbottt — Nbo.ttxx) + 02(Nbott — Nboxx) t +

1 az—1+U, 1 —(03—1 =0. 3.44
rl&,tt—ﬂs,xx—u—ﬂb,tt:5{(qu),x—(ﬂsu),xt}+ (013 *)Mbort = (@3 = DNk ( )
r

uz{(nbu)’xt _ }u’xxxﬁ inb’xm} (3.35) If the damping coefficient is zero, the solution to the linear
3 2U, problem is given by
the bottom governing equation in the dimensional space is Ns = Neo ol () (3.45)
M Mpge +bNpe +kNb=—P=pg(Ns—np) ~ (3.36) ,
with
wherem* b* andk* are respectively mass, damping coefficient (k)
and stiffness coefficient per unit area in a three dimensjmad- Nb = Nboe'l (3.46)
lem. Note that we assummg, is measured from the equilibrium u = upe ) (3.47)

6 Copyright © 2012 by ASME



where in dimensional form

_ P gK
Nbo = o = og) "~ (1 i ) Nso, (3.48)
_ o
Uo ="~ (3.49)
and has a dispersion relation in the form
o' -2 (ghk+ <) 1 gnieK=P9 _o (350
- - : .
In dimensionless format we get
o 1
Nso = Ngpe ™, = <1—@> o (351)
Q= 1no (3.52)
b = Crlso :

where ¢ = w/(k\/gh) is the dimensionless wave speed and
ay/gh/his used to nondimensionlize the velocityTherefore

Ns = ¢(0), r]bo:<1—c—12)2(0), uo:%Z(o) (3.53)

whereo = x—ct.

Since the dispersion relation (3.50) is a nonlinear eqoatio
in general,(2k, 2w) do not satisfy it. Therefore the nonlinear
terms on the right hand side of the first order governing égnat
(3.43) do not resonate first order solution while linear tedo.
To avoid unbounded resonance i we must have

1 1
2Ns0xx — 3 Uoxxxt + 5 Nboxxt = 0 (3.54)

2U;

Taking one integration with respect foand substituting from
equation (3.53), we end up getting

(x+Blooc=0 (3.55)
11
B= 5+E(CZ_1) (3.56)

Assuming a periodic solution both in time and space in thenfor

L =X (3.57)

we get the dispersion relation for the envelope

k" = w3 (3.58)

Forc? <1-— Z—g' the envelope moves in the same direction tha
the original wave is moving while for higher values it movas i
the opposite direction.

4 Conclusion

We presented formulation of a flexible (visco-elastic) sea
floor carpet composed of mass of the carpet and vertically ac
ing spring and generators with the latter modeled as a livisar
cous damper. We showed that the coupled system of gravit
waves and our carpet admits two modes of propagating wave:
the surface-mode and the bottom-mode. The major differenc
between the two mode is that the rate of decay of a surface
mode wave is higher for longer waves, whereas for a bottom
mode shorter waves are damped faster. The idea presented hi
can, essentially, incorporate any mud model and its pedoga
under different models/assumptions may worth furtherstige-
tion. Specifically the performance may be substantiallygased
if frequency-dependent damping and stiffness coefficiemnés
incorporated (see e.g. 16). While the discussion on the-eng
neering aspects and implementation issues of the presiele@d
is beyond the scope of this manuscript, it was brought to ou
attention that a flexible membrane (floating) wave energy con
verter (hamed Lylipad), sharing most of its implementatsn
pects with our flexible carpet, is already under the invedimmn
by the industry.
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