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In a two-layer density-stratified fluid it is known, due to Ball (J. Fluid Mech., vol. 19,
1964, p. 465), that two oppositely travelling surface waves may form a triad resonance
with an interfacial wave. Ball claims ‘there are no other interactions’ between two
surface waves and one interfacial wave. Contrary to this, here we present a new class
of triad resonance that occurs between two co-propagating surface waves and one
interfacial wave. While in Ball’s resonance the interfacial wave has a wavelength of
about half of two surface waves, in the new resonance presented here the interfacial
wave has a much higher wavelength compared to those of surface waves. This,
together with the unidirectionality of the participant triplet, makes the realization of
the new resonance more likely in real ocean scenarios. We further show, via theoretical
analysis and direct simulation, that, unique to this new class of resonance, the triad
inevitably undergoes a cascade of (near-) resonance interaction that spreads the energy
of initial waves to a number of lower and higher harmonics. The significance of the
resonance studied here is, particularly, more emphasized in the littoral zones, where
the spectrum refracts toward a unidirectional wave train.

Key words: nonlinear instability, stratified flows, waves/free-surface flows

1. Introduction
In the context of water waves, resonance transfers a significant amount of energy

from a group of waves to another. Resonance is different from weak nonlinear
interactions in that resonant wave amplitude may grow as large as the amplitude
of initial waves. It is now established that resonance interactions between surface
and/or internal waves play an important role in the evolution of the ocean spectrum
(see e.g. Watson, West & Cohen 1976; Dysthe & Das 1981; Hammack & Henderson
1993; Craig, Guyenne & Sulem 2010).

Leading-order resonance may occur at second order (in the perturbation expansion
of nonlinear governing equations) between a triplet of waves, and is called a triad
resonance. In a homogeneous fluid it is known that, except in the limit of very shallow
water or if surface tension intervenes, a triad resonance does not occur (Dyachenko &
Zakharov 1994) and leading-order resonance occurs at third order between four waves,
i.e. the quartet resonance (Phillips 1960; Longuet-Higgins 1962).

In a two-layer density-stratified fluid, however, triad resonance may occur between
surface and interfacial waves. Specifically, two classes of triad resonance have been
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discovered and investigated so far. Class I triad resonance forms between two counter-
propagating surface waves and one interfacial wave (Ball 1964; Joyce 1974). For
typical ocean parameters, the two surface waves have almost the same wavelengths,
hence forming a standing wave pattern on the surface, and the wavelength of the
interfacial wave is about half that of surface waves. Class II triad resonance occurs
between two counter-propagating interfacial waves and one surface wave (Wen 1995;
Hill & Foda 1996; Jamali, Seymour & Lawrence 2003). In class II, the two interfacial
waves must have almost the same wavelengths, forming a standing wave pattern on the
interface, while the surface wave is much longer and has a frequency about double that
of interfacial waves.

Here we present a new class of triad resonance (class III) between surface and
interfacial waves that is significantly different in characteristics from classical class
I and II. Specifically, in class III resonance the triplet of waves – two surface and
one interfacial – travel in the same directions, and the interfacial wave has typically
a much longer wavelength compared to the two surface waves. We will show that,
unique to class III, the triad of waves inevitably leads to a cascade of multiple
simultaneous (near-) resonance interactions that spreads the energy of initial waves
into waves with lower and higher frequencies. To address the problem of amplitude
growth of original triplet and new resonant harmonics, a multiple-scale analysis based
on conservation of total energy is formulated here, and its performance is validated
and discussed by comparing with direct simulation results from a high-order spectral
scheme. Illustrative examples show the potential for a significant energy transfer and
spreading in finite time.

Contrary to classes I and II, class III resonance only requires co-propagating waves;
also, the participant interfacial wave has to be much longer than the surface waves.
Both of these requisites are more likely to be realized in the real ocean and hence
to influence the evolution of ocean spectra. The latter requisite also offers a new
potential mechanism for the (still disputable) generation mechanism of long interfacial
waves (Garrett & Munk 1979; Farmer & Armi 1999). Class III triad resonance may
also accelerate the damping of high-frequency surface waves travelling over muddy
seafloors (e.g. Sheremet & Stone 2003; Alam, Liu & Yue 2011) by transferring
their energy to long interfacial waves that easily get damped by the bottom action.
Importance of class III triad resonance is more emphasized in littoral zones and over
continental shelves, where the spectrum refracts to a unidirectional wave train. We
finally note that class III triad resonances may also form between two interfacial waves
and one surface wave, but for very strong density ratios, atypical of real oceans, and
therefore is not pursued here.

2. Governing equations
Consider free propagating waves on the surface and the interface of a two-layer

density-stratified fluid. Depths and densities of the upper and lower layers are,
respectively, given by hu, ρu and h`, ρ`. We define a Cartesian coordinate system
with the x-axis on the mean free surface and the z-axis positive upward. In each layer,
we assume that the fluid is homogeneous, incompressible, immiscible and inviscid,
and the motion is irrotational and described by the velocity potential φu(x, z, t) or
φ`(x, z, t). The equations governing the motion of a two-layer fluid are (ignoring
surface tension):

∇2φu = 0, −hu + η` < z< ηu, (2.1a)
∇2φ` = 0, −hu − h` < z<−hu + η`, (2.1b)
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ηu,t + ηu,xφu,x − φu,z = 0, z= ηu, (2.1c)
φu,t + 1

2(φ
2
u,x + φ2

u,z)+ gηu = 0, z= ηu, (2.1d)
η`,t + η`,xφu,x − φu,z = 0, z=−hu + η`, (2.1e)
η`,t + η`,xφ`,x − φ`,z = 0, z=−hu + η`, (2.1f )

ρu[φu,t + 1
2(φ

2
u,x + φ2

u,z)+ gη`] − ρ`[φ`,t + 1
2(φ

2
`,x + φ2

`,z)+ gη`] = 0,
z=−hu + η`,

}
(2.1g)

φ`,z = 0, z=−hu − h`, (2.1h)

where ηu = ηu(x, t), η` = η`(x, t), are respectively the free surface and interfacial
wave elevations, and g is the gravitational acceleration. The linearized system of
equations (2.1a)–(2.1h) admits propagating wave solution with its frequency ω and
wavenumber k satisfying the dispersion relation (Lamb 1932, art. 223, p. 387):

D(k, ω)≡ ω4(R + coth khu coth kh`)− ω2gk(coth khu + coth kh`)

+ g2k2(1−R)= 0. (2.2)

where R = ρu/ρ` is the density ratio. For a given ω, (2.2) possesses two pairs
of real roots for the wavenumber k (Ball 1964) where the wave associated with
the higher/lower wavenumber is called an interfacial/surface mode wave. For a
weak stratification, a surface/interfacial mode wave has a higher amplitude on the
surface/interface. Throughout this paper we use subscripts s,i (capital or lowercase) to
refer to surface and interfacial mode wavenumbers and frequencies, respectively.

3. Resonance condition
Two free propagating waves with wavenumbers and frequencies (kp, ωp) and (kq, ωq)

are in a triad resonance with a third wave (kr = kp ± kq, ωr = ωp ± ωq) if D(kr, ωr)= 0,
i.e. if (kr, ωr) is also a free propagating wave. Under the resonance energy may
transfer (significantly) from original free waves to the resonant wave, and the
amplitude of the resonant wave may become of the same order as original waves.
In a homogeneous fluid it is known that triad resonance cannot occur (Dyachenko
et al. 1994), except in the limit of shallow water, for which waves are non-dispersive,
or if the effect of surface tension is taken into account (McGoldrick 1965). In a
two-layer density stratified fluid, Ball (1964) showed that two oppositely travelling
surface waves may resonate an interfacial wave (class I). Later Wen (1995) showed
that two oppositely travelling interfacial waves form a triad resonance with a surface
wave if three waves satisfy the resonant condition (class II).

Figure 1 graphically demonstrates these two classes of triad resonance. Solid
curves and dashed curves are, respectively, surface and interfacial solutions of the
dispersion relation (2.2). For precision we further indexed each curve with letters S, I
to indicate surface and interfacial waves, and subscripts r,l to indicate, respectively,
right-going and left-going waves. Any point on the Sl,r or Il,r branches represents
a free propagating surface or interfacial wave, respectively. Referring to figure 1(a),
let us consider a free surface wave OA = (kS1, ωS1) and draw a curve parallel to Il

from the point A: we named it I′l . The curve I′l will intersect Sl at the point B, and
clearly OA + AB = OB. Note that OB = (kS2, ωS2) is a left-going surface wave and
AB = (kI, ωI) is a left-going interfacial wave. Therefore the relation OA + AB = OB
leads to kS1 + kI = kS2 and ωS1 + ωI = ωS2, which are the resonance conditions between
triplet of waves of (kS1, kS2, kI).
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FIGURE 1. Geometric construction for class I and II triad resonance in a two-layer density-
stratified fluid. Curves (Sr, S`,——) are surface wave solutions and (Ir, I`,- - -) are interfacial
wave solutions of the dispersion relation (2.2), and (I′r, I′`, · · ·) are plots of interfacial
wave solutions originating at A. Resonant waves are where I′r,l (dotted) intersects with Sr,l, Ir,l

(solid and dashed) and are denoted by filled black circles. (a) A sample case of class I triad
resonance where two surface waves (OA,OB) are in resonance with an interfacial wave AB.
(b) All class I (OA+AB= OB, OA+AC = OC) and class II (OA+AD= OD, OA+AE = OE)
triad resonances.

All possible triad resonance scenarios (a total of four) of class I and II are shown
in figure 1(b) and an argument similar to figure 1(a) applies to each case. Triangles
OAD and OAE are indicators of triad resonances between, respectively, (kS1, kI3, kI5)
and (kS1, kI4, kI6), each of which is composed of two counter-propagating interfacial
waves and one surface wave (Wen 1995); triangles OAB and OAC are indicators of
triad resonances between, respectively, (kS1, kS2, kI) and (kS1, kS3, kI2), each of which
is composed of two counter-propagating surface waves and one interfacial wave
(Ball 1964).

Ball (1964) claims that the triad resonances between two surface waves and one
interfacial wave ‘always involve two external (i.e. surface) waves moving in the
opposite direction to one another’. Contrary to this claim, here we present a new
class of resonance (class III) that occurs between two short surface waves and
one long interfacial wave where all three waves are co-propagating. The resonance
condition for class III is presented schematically in figure 2, where the convention
for curves is the same as in figure 1. Referring to figure 2, we see that the relations
OA+AF = OF and OA+AG= OG are, respectively, triad resonance conditions between
waves (ks1, ks2+, ki1) and (ks1, ks2−, ki2), i.e.{

ks1 + ki1 = ks2+,
ωs1 + ωi1 = ωs2+,

{
ks1 − ki2 = ks2−,
ωs1 − ωi2 = ωs2−.

(3.1)

Relations (3.1) are class III triad resonance conditions between co-propagating surface
and interfacial waves. It is to be noted that for intersection points F,G to exist it is
necessary that θi0 > θsk , where θi0 = dωi/dk|k=0 = Cg,i0 and θsk = dωs/dk|k=ks1

= Cg,sk .
Therefore the necessary condition for the class III triad resonance is

Cg,i0 > Cg,sk . (3.2)

The necessary condition (3.2) indicates that class III triad resonance obtains only
beyond a certain threshold. This perhaps explains why this class was overlooked by
Ball (1964).

To answer the question of whether or not this necessary condition is satisfied,
in a general case, the intersection points F,G have to be sought numerically.
Figure 3(a) plots the resonance condition for class I and III for an ocean of R = 0.95



A new triad resonance between co-propagating surface and interfacial waves 271

k

Sr

Il

Sl

O

A

F

G

FIGURE 2. Schematic representation of the new class III triad resonance between two
co-propagating surface waves and one interfacial wave. For legend see caption of figure 1.

Class I

Class II
I

Class II

10

5

0

–5

–10

10

5

0

–5

–10

2 4 6 8 10 12 14 2 4 6 8 10 12 14

15

–15

15

–15
0 16 0 16

(a) (b)

FIGURE 3. Resonance condition for class I, II and III triad resonance in a two-layer
density-stratified fluid with R = 0.95, h̃ = 0.33. (a) Any chosen point on a solid curve
represents a triad resonance between two surface waves ks1, ks2 and one interfacial wave
ki = |ks2 − ks1| × sign(ks2 + ks1). Curves are resonance conditions found from finite-depth
dispersion relations ((3.1), ——), asymptotic conditions with deep-layer assumptions for
class III ((4.4), - - -) and class I ((4.5), – · –). (b) Any point on a solid curve represents a triad
resonance between two interfacial waves ki1, ki2 and one surface wave ks = ki1 + ki2. Curves
are resonance conditions found from finite-depth dispersion relations (——), asymptotic
conditions with deep-layer assumptions for the class II ((4.5), – · –).

(typically used in experimental investigations of two-layer models; see e.g. Joyce
1974) and h̃ = 0.33, where h̃ = hu/(hh + h`). In figure 3(a) any point on the solid
curve represents a triad resonance between its corresponding values of ks1, ks2 and
ki = |ks2 − ks1| × sign(ks2 + ks1), where the last term in the expression corrects the
sign and obtains by investigating figure 2 (we assume all frequencies are positive,
therefore waves with negative wavenumbers travel in the opposite direction to waves
with positive wavenumbers). Note that class III appears beyond a certain wavenumber
(ks1hu ≈ 7.5), which explains how it may have been overlooked in the past. Figure 2(b)
plots the resonance condition between two interfacial wave components, ki1, ki2, and
a surface wave of ks = ki1 + ki2. In contrast to figure 3(a) (class I), in this case
counter-propagating waves ki1, ki2 have close wavelengths and the resonant surface
wave ks is much longer than ki1,2. We finally note that class III triad resonance can
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also occur between two co-propagating interfacial waves and one surface wave, but for
very strong density ratios (in the limit of deep layers it can be shown that R > 1/3),
which is non-physical for typical oceans.

4. Limiting cases
If we define dimensionless frequency σ = ω√H/g, where H = hu + h`, and

upper/lower/total shallowness by µu = khu, µ` = kh` and µH = kH, then the dispersion
relation (2.2) in dimensionless variables can be rewritten in the form

σ 4(R + cothµu cothµ`)− σ 2µH (cothµu + cothµ`)+ µ2
H
(1−R)= 0. (4.1)

Limiting cases of a two-layer density-stratified fluid are when the stratification is
weak i.e. 1 − R = ν2 and ν � 1, and/or when upper/lower layers are either deep
or shallow, i.e. µu,`,H �� 1. If ν � 1, and for general µu, µ`, µH , surface (σs) and
interfacial (σi) wave solutions of (4.1), correct to O(ν), are

σ 2
s = µH tanhµH , σ 2

i =
µHν

2

cothµu + cothµ`
, (4.2)

and the necessary condition for the class III resonance, (3.2), is obtained in a closed
form,

1
2

√
µH tanhµH

µuµ`

(
1+ 2µH

sinh 2µH

)
< ν. (4.3)

From (4.3), it is seen that for a given total water depth H, resonance is more likely
when hu = h` (since the left-hand side of the equation is at a minimum). For very
long waves, i.e. µH � 1, the necessary condition is simplified to ν > 2, which never
satisfies. For short waves, i.e. µH � 1, and if µu = µ`, then the necessary condition is
µH > 1/ν2.

Referring to figure 2, class III triad resonance exists among ks1, ks2 and ki1 if
(3.1) is satisfied. If we consider a weak stratification and deep water assumption, i.e.
1/ν, µu, µ` � 1 for all three waves participating in the resonance, then after some
algebra closed-form expressions for the resonance condition are obtained (see dashed
lines in figure 3a):

ks2

ks1
= 1± 2ν2. (4.4)

Note that if the necessary condition (4.3) is not satisfied, there will be no resonance. A
similar expression is obtained for class I and II triad resonances, respectively,

ks2

ks1
=−1± 2ν,

ki2

ki1
=−1± 2ν2. (4.5)

These asymptotic expressions are also shown in figure 3(a,b) with dot-dashed lines.

5. Amplitude growth rate
One interesting feature of class III resonance that significantly distinguishes it from

class I and II is that all three interacting waves in a resonance triplet move in the
same direction. This property, as we will discuss shortly, paves the way for the energy
spread from initially few (a minimum of two) waves to several higher and lower
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FIGURE 4. (a) Schematic representation of the interaction path of a group of waves that
form a matrix of multiple triad resonances. (b) Schematic representation of a cascade of triad
resonances in a typical class III resonance (see § 5). P1,2,3 (i.e. triads enclosed in the dotted
boxes) respectively indicate inclusion of primary, secondary and tertiary triad resonances.

harmonics, a phenomenon that does not occur in class I and II. Before discussing
the concept of multiple resonance in class III, we note that in general, if the number
of free surface/interfacial waves satisfies n > 3, then we may find that m > 1 triad
resonances are occurring simultaneously (of course m 6

( n
3

) = n!/[3!(n − 3)!]). This
can be schematically represented if we assign a triangle to each triplet of waves
forming a triad resonance, as is shown in figure 4(a). For example, since vertices ai, aj

and ak form a triangle in figure 4(a), then we must have ki ± kj = kk and ωi ± ωj = ωk,
with each wave satisfying the dispersion relation (2.2). Note that, for example, the
wave ai also belongs to another triad triangle (ai, al, am), and wave aj belongs also to
the triplets of (aj, ag, an), (aj, an, ah), and more.

For class III triad resonance, referring to figure 3(a), it is seen that the resonance
condition curve is nearly symmetric about the bisector of the upper half-plane (see
(4.4)). Therefore in (3.1) we must have ki1 ≈ ki2 (= ks2 − ks1 ≈ 2ν2ks1 in the limit of
deep layers). This implies that for a given surface wave (ks1) one interfacial wave
(ki ≈ 2ν2ks1) can simultaneously resonate both ks2− and ks2+ (see also figure 2). This
is shown schematically in figure 4(b) (box P1). Physically speaking, the simultaneous
two-triad resonances transfer energy from ks1 to two nearby waves of ks2± (at leading-
order nonlinearity). To make the matter more complicated, since waves ks2± are close
to ks1, the interfacial wave ki can form a new set of (strictly speaking almost) triad
resonance between ks2±, ki and a new wave ks3± = ks2± ± ki (see figure 4b, box P2).
The chain may easily continue to a number of steps until the detuning becomes
sufficiently large that further (near-) resonance interaction is no longer of leading-order
importance.

To obtain analytical solutions for the evolution of amplitude of initial as well as (all)
resonant waves in a class III triad resonance, here we use a multiple-scale argument
based on conservation of total energy. Consider a free progressive surface or an
interfacial wave in the form

η = pei(kx−ωt) + c.c.= a cos(kx− ωt + ψ), (5.1)

where the real parameter a= 2|p| is the physical amplitude of the wave and the phase
satisfies tanψ = Im(p)/Re(p). The total energy of this wave is independent of the
constant phase ψ , and is given by

E = qa2, q= 1
2ρ`g[R + λ2(1−R)], (5.2)
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where λ= cosh khu−gk/ω2 sinh khu. For an n-wave system the total energy is therefore
Etotal =

∑
i=1,nqia2

i , where subscript i indexes each individual wave. Amplitudes of
resonant waves, however, vary slowly in time: in other words they vary as a function
of a slow time τ (usually defined in terms of surface steepness ε = ka� 1, i.e. τ = εt).
From conservation of total energy we must have dE/dτ = 0, therefore∑

i=1,n

qiai
dai

dt
= 0. (5.3)

If n= 3, (5.3) admits a solution of the form (Alam, Liu & Yue 2010)

da1

dt
= α1a2a3,

da2

dt
= α2a1a3,

da3

dt
= α3a1a2, (5.4)

with
∑

i=1,2,3qiαi = 0. The coefficients αi are readily found from regular perturbation
(see the Appendix) and by matching the growth rate at τ = 0. The set of ordinary
differential equations (5.4) has a closed-form solution in terms of Jacobian elliptic
functions, and shows interesting behaviour for special values (e.g. Alam et al. 2010,
for the case of quartet Bragg resonance in homogeneous waters).

For n > 3, simultaneous interactions may occur between different groups of triads.
For instance, for the case of figure 4(a), from regular perturbation expansion (see the
Appendix) it turns out that, to leading order,

dai

dτ
= αijkajak + αimlamal + · · · , (5.5)

where αijk, αiml, . . . are obtained from the Appendix. Generalizing the idea to an n-
wave system, we arrive at the solution to the energy conservation equation (5.3) in the
form

dap

dτ
=
∑

αpqraqar, (5.6)

with the condition αpqrqp + αrpqqr + αqrpqq = 0, where ap, aq and ar are vertices of
each individual triangle, i.e. forming a triad resonance (the order of indices of α is not
important). As before, the coefficients αpqr are found from regular perturbation (see the
Appendix). The general solution to (5.6) is to be found via numerical quadrature. Note
that triangles in figure 4 are not limited to remain in a two-dimensional plane.

6. Direct simulation and discussion of results
When more than just a few waves interact simultaneously, it is algebraically

tedious – if not impossible – to track their interactions. This fact becomes more
emphasized if various nonlinear interactions, such as resonances, near-resonances
(detuned interactions), higher/lower harmonic generations, and effects of higher-order
couplings/nonlinearities, are to be taken into account. To address the problem of
many (typically N = O(104)) waves interacting and to consider an arbitrary order
of nonlinearity (typically M = O(10) in terms of perturbation expansions), we have
recently extended a direct simulation scheme based on a high-order spectral method
(HOS), originally derived to study nonlinear wave–wave (Dommermuth & Yue 1987)
and wave–bottom (Liu & Yue 1998) interactions, to a two-layer density-stratified fluid
with finite-depth upper and lower layers (Alam, Liu & Yue 2009, where extensive
convergence tests and validations are also provided). In this section we use HOS to
study long-time behaviour of class III triad resonance of surface and interfacial waves



A new triad resonance between co-propagating surface and interfacial waves 275

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

0

200 400 600

200 400

200 400 600

200 400600 600

1.0

0

1.0

0

(a) (b)

(c) (d)

FIGURE 5. Evolution of amplitude of interacting waves as a function of time as predicted
from numerical simulation and theory. (a) Evolution of as1 from numerical computation
(——) is compared with the theory of (5.6) for P= 1 (– � –), P= 2 (– ◦ –), and P= 1 (· · ·).
(b–d) Plots of evolution of as2±, as3± and as4±, respectively, as predicted by HOS (——, - - -)
and theory of (5.6) (· · ·, – · –).

and also as a validation tool for the theoretical analysis of § 5. For the following direct
simulations we use N = 2048, M = 3 and the time step ωs1δt = 0.1. All presented
results converge for the chosen parameters.

We first consider a short surface wave µs1 = 8 (εs1 = 0.008) and a relatively long
interfacial wave µi = 0.3 (εi = 0.001 on the interface). In a water of h̃ = 0.33 and
R = 0.95, it can be shown that these two waves form two simultaneous triad
resonances with free surface waves of µs2− = 7.7 and µs2+ = 8.3. These resonant
waves are themselves in a (near-) resonance interaction with ki and, respectively, two
new waves of µs3− = 7.4 and µs3+ = 8.6, and the cascade of interaction continues
to µs4− = 7.1 and µs4+ = 8.9 and further on. Figure 5 compares results of evolution
of amplitude of original surface wave (as1) and resonant surface waves (as2±,3±,4±)
obtained from direct simulation and theoretical analysis (5.6). In figure 5(a), variation
of as1 is plotted as a function of time as predicted by HOS, and compared with
quadrature of (5.6) for P = 1, 2, 3. While a very good agreement is obtained for
initial-time evolution, the effect of secondary (P = 2) and tertiary (P = 3) interactions
becomes of significant importance for later times. The analytical solution with only
primary resonance, P = 1, predicts a perfect modulation of energy between as1 and
as2±, whereas including secondary and tertiary resonances clearly shows that energy
flows to new waves (a3±,4±) (see figure 5b–d). The variation in amplitude of resonant
waves a2±,3±,4± is plotted in figure 5(b) to figure 5(d), compared with the analytical
results of (5.6) with P = 3. Note that the amplitude of as2± starts to increase at
t/T1 = 0 while the growth in amplitude of as3± lags until as2± develops, and similarly
as4± lags as3±. Direct simulation and analytical results are in very good agreement
initially and, as expected, slowly diverge for longer times.

The resonance presented here also occurs if incident surface waves are slightly
oblique to each other. The resonance condition now has to be written in the vector
form ks1+ ki = ks2 with ωs1±ωi = ωs2. If the surface wave k2 has an angle 0< θ12� 1
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with respect to surface wave k1, then we always have |θr1| > |θ12|, where θr1 is the
angle of resonant interfacial wave kr with respect to k1. If θ12 further increases, the
case of oppositely travelling surface waves of Ball (1964) is retrieved. A similar
analysis (to that of Ball 1964) can be performed to show that, for a weak stratification,
as θ12 increases from zero the strength of resonance decreases until θ12 = π/2, where
the coefficients of amplification are zero.

7. Conclusion
We have presented a new triad resonance (class III) between surface and interfacial

waves in a two-layer density-stratified fluid. This resonance forms between a triplet of
co-propagating two surface waves and one interfacial wave whose wavelength is much
longer than those of surface waves. By investigating the resonance condition and the
dispersion relation, we have shown that class III is inevitably followed by a cascade
of triad (near-) resonances transferring the energy of originally few waves to a number
of higher/lower harmonics. Using energy conservation and ideas from multiple scales,
we have derived analytical sets of coupled ordinary differential equations governing
the evolution of amplitudes of all interacting waves. These results were validated
against direct simulations of a high-order spectral scheme and it is shown that effects
of secondary and tertiary resonances, over long times, may significantly alter the
evolution of the original waves.

Class III triad resonance between surface and interfacial waves can transfer energy
from short surface waves to much longer interfacial waves, and hence may offer
another potential mechanism for the generation of interfacial waves (e.g. Garrett &
Munk 1979). If the seafloor is muddy, this phenomenon may further help the drainage
of energy from the high-frequency part of the spectrum (e.g. Sheremet & Stone 2003).
In addition, the formation of a cascade of triad (near-) resonances may affect the
stability of narrow-band spectra in stratified waters.
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Appendix. Regular perturbation solution for the triad resonance
Consider three free waves, k1, k2, kr = k1 + k2, forming a triad resonance triplet. If

initial surface amplitudes of these waves are, respectively, a1,2 6= 0, ar = 0, then ar

(initially) grows in time according to

ar = γ a1a2t + non-growing terms, (A 1)

and the growth rate γ is

γ =−ωr/(2g2kr)× [C4ω
4
r + C3ω

3
r + C2ω

2
r + C1ωr + C0]/[C−2ω

2
r + C−0], (A 2)

where

C0 =−2k2
r M2g2(1− R)surslr, C1 =−g2kr(M3 − curM1)(1− R)slr, (A 3)

C2 = gM2krslrcur(1+ R)+ gkr(2M2surclr −M5slr),

C3 =−g(M4 −M3)clr − gM1(curclr + Rsurslr),

}
(A 4)
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C4 =−M2(clrcur + Rsurslr), C−0 =−2gkr(1− R)surslr,

C−2 = clrsur + slrcur,

}
(A 5)

M1 = 1/2(k1 + k2)(k2a1A2 + A1a2k1), (A 6)
M2 = 1/2B1k1B2k2 − 1/2A1k1A2k2 − 1/2a1B2k2ω2 − 1/2a2B1k1ω1, (A 7)

M3 =−1/2(k1 + k2)(k1b2B1su1 − k1b2A1cu1 + b1B2k2su2 − k2A2cu2b1), (A 8)
M4 = 1/2(k1 + k2)(b2D1cl1k1 + D2b1k2cl2), (A 9)

M5 = −1/2b1D2sl2k2ω2 + 1/2RA1su1k1B2cu2k2 − 1/2Rk1B1su1k2A2cu2

+ 1/2Rk1B1su1k2B2su2 − 1/2b2D1sl1k1ω1 − 1/2Rb1ω2A2su2k2

+ 1/2Rk1A1cu1k2A2cu2 + 1/2D1sl1k1D2sl2k2 + 1/2Rb1ω2B2cu2k2

− 1/2D1cl1k1D2cl2k2 + 1/2Rb2ω1B1cu1k1 − 1/2Rk1A1cu1k2B2su2

− 1/2RA1su1k1A2su2k2 + 1/2RB1cu1k1A2su2k2 − 1/2RB1cu1k1B2cu2k2

− 1/2Rb2ω1A1su1k1, (A 10)

cui = cosh(kihu), sui = sinh(kihu), cli = cosh(kih`),
sli = sinh(kih`), i= 1, 2, r

}
(A 11)

bi =
(

cosh kihu − gki

ω2
i

sinh kihu

)
, Ai =− g

ωi
, Bi =−ωi

ki
,

Di =− biωi

ki sinh kih`
, i= 1, 2.

 (A 12)

Note that if waves k1, k2 have initial angular phases ψ1, ψ2, the resonant wave has an
angular phase of ψr = ψ1 + ψ2 and all three angular phases stay constant over time
(see e.g. McGoldrick 1965).
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