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We consider the indirect mechanism for dissipation of short surface waves through
their near-resonant interactions with long sub-harmonic waves that are dissipated by
the bottom. Using direct perturbation analysis and an energy argument, we obtain
analytic predictions of the evolution of the amplitudes of two short primary waves
and the long sub-harmonic wave which form a near-resonant triad, elucidating the
energy transfer, from the short waves to the long wave, which may be significant
over time. We obtain expressions for the rate of total energy loss of the system and
show that this rate has an extremum corresponding to a specific value of the (bottom)
damping coefficient (for a given pair of short wavelengths relative to water depth).
These analytic results agree very well with direct numerical simulations developed for
the general nonlinear wave–wave and wave–bottom interaction problem.
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1. Introduction
Recent observations report significant short-wave damping as they travel over

dissipative (muddy) seafloors (see e.g. Sheremet & Stone 2003; Sheremet et al.
2005; Elgar & Raubenheimer 2008). An explanation via classical linearized theory
(e.g. Dalrymple & Liu 1978; Macpherson 1980; Myrhaug 1995; Ng & Zhang 2007)
is not immediately available since the short wave apparently does not interact with
the bottom. Nonlinear effects have been believed to play a role although the precise
mechanism remains uncertain in part due to the absence of rigorous theory and
quantitative predictions.

This work is motivated by recent suggestion (e.g. Sheremet et al. 2005) that the
dissipation of short waves might result from their nonlinear coupling with long
waves which are directly affected by bottom dissipation. In numerical simulations
of nonlinear conoidal wave propagation over viscous muds, Kaihatu, Sheremet &
Holland (2007) observed that the amplitude of high-frequency wave components
could be reduced by the dissipation of sub-harmonic wave components, supporting
the hypothesis of Sheremet et al. (2005). Matching field observations with simulations
from a nonlinear Boussinesq wave model, Elgar & Raubenheimer (2008) obtained the
dissipation rate of the mud bottom as a function of wave frequency and water depth
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showing that the dissipation of long (infragravity) waves dominates that of short waves.
The detailed mechanism for these, however, has not been fully elucidated.

Alternative mechanisms have also been proposed. Recently, Mei et al. (2010) found
through a perturbation analysis with a visco-elastic mud model that long waves can
be dissipated through the slow modulation of short waves. This effect was also
observed by Torres-Freyermuth & Hsu (2010) in simulations based on the Reynolds-
averaged Navier–Stokes equations of two-layer fluids. The predictions, however, do
not qualitatively explain the observations of Sheremet et al. (2005) and Elgar &
Raubenheimer (2008).

To investigate the nonlinear mechanism suggested by Sheremet et al. (2005) and
Elgar & Raubenheimer (2008) for the dissipation of short waves by their nonlinear
interactions with long waves that are directly affected by bottom dissipation, we
consider a canonical problem involving the nonlinear evolution of two short surface
waves and their corresponding sub-harmonic long wave. Such a three-wave system
does not satisfy exact resonance conditions for water waves except in the limit of (non-
dispersive) shallow water (Mei & Unluata 1971; Young 1998). For water depth shallow
relative to the long (sub-harmonic) wave, however, the requisite dispersion relationship
is almost satisfied. Under this almost resonant condition, the triad undergoes nonlinear
evolution that involves energy exchange among the three components. Our interest is
in this nonlinear evolution in the case where the sub-harmonic wave is subject to
direct (bottom) damping. Of special interest is the rate at which the energy in the short
waves, and generally that of the overall system, is dissipated.

We perform a perturbation analysis coupled with an energy argument to derive
the governing equations for the three-wave system, and obtain analytic solutions, to
leading order, for the nonlinear evolutions of respectively the sub-harmonic long wave
and the short primary waves. The results provide quantitative predictions for the
(short-wave) dissipation mechanism in support of earlier conjecture. For the general
practical problem that may involve multiple such (near-resonant) interactions, we apply
a direct numerical simulation based on the high-order spectral method (Dommermuth
& Yue 1987; Liu & Yue 1998). The perturbation theory predictions are confirmed well
by the direct numerical results.

2. Governing equations
We consider the irrotational motion of a homogeneous inviscid incompressible fluid

with a free surface. The water depth, h, is assumed to be constant, surface tension
is ignored, and surface slopes, ε, are small such that perturbation theory applies.
Consider a Cartesian coordinate system with its origin located on the calm water
surface with positive z oriented upward. In terms of the velocity potential φ, the fully
nonlinear governing equations in two dimensions are

∇2φ = 0, (2.1a)
φtt + gφz + βφt + ∂t(φ

2
x + φ2

z )+ 1
2 (φx∂x + φz∂z)

(
φ2

x + φ2
z

)= 0, z= η, (2.1b)
φz = 0, z=−h, (2.1c)

in which β represents the (frequency dependent) damping due to bottom
dissipation, g is the acceleration due to gravity, and the surface elevation is
η =− [φt + (φ2

x + φ2
z )/2

]
/g evaluated on z= η.

Consider two propagating free waves given by

η(x, t)= a1 sin(k1x− ω1t)+ a2 sin(k2x− ω2t), (2.2)
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where ki, ωi, ai, i = 1, 2, respectively represent the wavenumber, frequency and
amplitude of each wave. For free propagating waves, ki and ωi satisfy the dispersion
relation, ω2

i = gki tanh kih. We are interested in the characteristics and development
of the sub-harmonic wave, wavenumber k− = k1 − k2 and frequency ω− = ω1 − ω2,
associated with the (second-order) interaction of these two free waves. For general
finite depth, k−, ω− cannot also satisfy the dispersion relationship, hence the three
waves cannot form a resonant triad (see e.g. Hasselmann 1962; Young 1998).
The exception is in the non-dispersive shallow water limit, wherein such triads
are associated with harmonic generation, resulting in transfer of energy among
the harmonics (see e.g. Goda 1967; Mei & Unluata 1971; Bryant 1973; Alam &
Mei 2007).

Our interest is the case where k1, k2 are relatively close and the water depth is
finite but small relative to the long sub-harmonic wave. In this case, the dispersion
relationship is approximately satisfied:

(
√

gk− tanh(k−h)− ω−)/ω− ≡ µ� 1. (2.3)

This near-resonance condition is a case of bound interaction, wherein the energy
associated with the short k1, k2 waves may be continuously transferred to the long k−
wave if the latter is damped, for example, through bottom interactions. This scenario
is of practical importance especially when bottom conditions such as that of a muddy
seafloor provide effective damping of the long wave. For example, significant damping
of short waves in muddy regions has been reported by Sheremet & Stone (2003) and
Sheremet et al. (2005).

The effect of bottom dissipation, expressed by β in (2.1b), decreases exponentially
with decreasing wavelength (for relatively short waves) and is given, say, by
β ∼ exp(−σkh), where σ is a (positive) constant (see for instance Dalrymple & Liu
1978; Macpherson 1980; Kaihatu et al. 2007). The ratio of the damping rates between
the short primary and long sub-harmonic waves is thus scaled by: exp[−σ(ki − k−)h],
i = 1, 2. For sufficiently large (ki − k−)h, the damping of the short waves in (2.1) can
therefore be ignored relative to the long wave.

3. Second-order perturbation solution
We solve (2.1) to second order using a regular perturbation expansion, in terms of

small wave steepness ε. Writing φ = εφ(1) + ε2φ(2) + · · · , at the second order (2.1)
gives

∇2φ(2) = 0, (3.1a)

φ(2)tt + gφ(2)z + βφ(2)t =−2φ(1)x φ
(1)
xt − 2φ(1)z φ

(1)
zt − η(1)(φ(1)ttz + gφ(1)zz ), z= 0, (3.1b)

φ(2)z = 0, z=−h. (3.1c)

The right-hand side of (3.1b) contains quadratic forcing terms, resulting from the
interactions of the (first-order) short free waves. In general, the second-order solution
is small compared to the first-order solution unless a near-resonance condition (2.3)
obtains (see e.g. Mei 1985; Kirby 1986, for near-resonance behaviours in other water
wave systems). Our objective here is the small (ωit = o(1/ε)), initial, time evolution
of the second-order sub-harmonic long wave, φ−(2) ≡ φ−. In this time scale, the short
waves are not modified to leading order, and a1 and a2 can be assumed constant.
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Focusing on φ−, and upon substitution of the leading-order result (2.2) into the right-
hand side of (3.1b), we have

φ−tt + gφ−z + β−φ−t = I0a1a2 sin[k−x− ω−t], (3.2)

in which β− = β (ω−), and

I0 = ω1ω2

4gk1k2 sinh k1h sinh k2h
(C1 cosh k−h+ C2 sinh k−h

+ C3 cosh k+h+ C4 sinh k+h
)

(3.3)

where k+ = k1 + k2, C1 = ω1gk2
2 − ω2gk2

1, C2 = ω2k1ω
2
1 + ω1k2ω

2
2, C3 = C1 − 4k1k2gω−,

and C4 = ω2k1ω
2
1 − ω1k2ω

2
2. The initial-value problem for φ− can be solved using

Fourier transform in x and Laplace transform in t. The solution (assuming zero initial
condition) is finally given by

φ−(x, z, t)=− I0a1a2 cosh k−(z+ h)

2α
[(
ω∗2 − ω−2

)2 + β−2ω−2
]

cosh k−h

× {A cos[k−x+ αt] + C cos[k−x− ω−t] + E sin[k−x+ αt]
+ B cos[k−x− αt] +D sin[k−x− ω−t] +F sin[k−x− αt]} , (3.4)

where ω∗ =√gk− tanh k−h, α =
√

4ω2∗ − β−2/2 and

A = β−
(
αω− − 1

2ω−
2 − 1

2ω
2
∗
)

e−β−t/2, C =−2αβ−ω−, (3.5)

B = β−
(
αω− + 1

2ω−
2 + 1

2ω
2
∗
)

e−β−t/2, D = 2α
(
ω−2 − ω2

∗
)
, (3.6)

E = (αω2
∗ + ω−3 − ω−ω2

∗ + 1
2β−

2ω− − αω−2
)

e−β−t/2, (3.7)

F = (αω2
∗ − ω−3 + ω−ω2

∗ − 1
2β−

2ω− − αω−2
)

e−β−t/2. (3.8)

4. Near-resonance interaction without damping
If β− = 0, (3.4) reduces to

φ−(x, z, t)=− I0a1a2 cosh k−(z+ h)[
ω−2 − ω2∗

]
cosh k−h

×
{

sin [k−x− ω−t]+ ω−
ω∗

cos k−x sinω∗t − sin k−x cosω∗t
}
. (4.1)

If we assume µ� 1, the above equation can be further simplified to

φ−(x, z, t)= I0a1a2 cosh k−(z+ h)

µω−2 cosh k−h
sin

µω−
2

t cos [k−x− ω−t] . (4.2)

The surface elevation for φ− is then given by

η− =
∫
φ−z|z=0

dt = I0a1a2k− tanh k−h

µω−3
sin

µω−
2

t sin [k−x− ω−t] . (4.3)

It is seen that the amplitude of the sub-harmonic wave is modulated by a period of
Tmod = 4π/(µω−).

We note that (4.3) is obtained for the initial growth of φ− valid for ωit = o(1/ε),
and derived under the assumption of constant a1 and a2 (to leading order). To obtain
the solution for longer time (ωit = O(1/ε)), the time variation of a1 and a2 must now
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be included. To do that, we apply an energy argument. In terms of the total potential φ
and elevation η, in the absence of damping (β = 0), the total (average) energy of the
wave system is conserved:

Ē =
∫

dx

{
1
2
ρgη2 +

∫ 0

−h

1
2
ρ(φ2

x + φ2
z )dz

}
= constant. (4.4)

For the present case of a three-wave system with (time evolving) amplitudes, i.e.
short waves a1, a2 and sub-harmonic long waves a−, (4.4) has the form Ē =∑iqia2

i ,
where qi are functions of kih (only), and i= 1, 2,−. From the above, we obtain

dĒ

dt
= 2q1a1

da1

dt
+ 2q2a2

da2

dt
+ 2q−a−

da−
dt
= 0. (4.5)

Equation (4.5) can be satisfied by a solution of the form

da1

dt
= γ1a2a−f (t),

da2

dt
= γ2a1a−f (t),

da−
dt
= γ−a1a2f (t), (4.6)

where f (t) is an arbitrary function of time, and γ1, γ2, γ− are constants satisfying∑
iqiγi = 0. Matching (4.6) for a− to (4.3) valid for the initial growth of a−(t), we

obtain

γ− = I0k− tanh k−h

2ω−2
, f (t)= cos(µω−t/2). (4.7)

Note that in the above solution of γ− and f (t), the slowly time-varying effect of a1(t)
and a2(t) is not included as it gives a higher-order contribution to a− within the time
scale ωit = O(1/ε). The solutions for the other amplitudes in the sub-harmonic triad,
in terms of γ1, γ2, can be obtained similarly starting with the regular perturbation
solution for each. We note that a similar procedure can be used to obtain the solution
to the problem of harmonic generation in shallow water, recovering, for instance, the
results of Bryant (1973).

5. Near-resonance interaction with damping
We now consider a non-zero damping of the sub-harmonic long wave given by β−.

Equation (3.4) can be written in the form

φ−(x, z, t)= ω−I0a1a2

√
β−2 + 4µ2ω−2 cosh k−(z+ h)[(

ω2∗ − ω−2
)2 + β−2ω−2

]
cosh k−h

sin [k−x+ ω−t + ψ]+ TT, (5.1)

where ψ = arctan(β−/2µω−), and TT represents transient terms. The expression for
TT is complicated but simplifies in the case of small damping β−/ω∗ ≈ β−/ω− �
O(µ). Under this assumption, we obtain from (3.4)

φ−(x, z, t)≈− 2I0a1a2µω∗3 cosh k−(z+ h)

α
[(
ω∗2 − ω−2

)2 + β−2ω−2
]

cosh k−h

× {sin[k−x− ω−t] − e−β−t/2 sin[k−x− αt]} , (5.2)

which contains explicitly the two time-harmonic components: one with frequency ω−
and constant amplitude; and the other with frequency α and a time-decaying amplitude
representing the initial transient effect.
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The energy dissipation by the sub-harmonic wave can be calculated from the
boundary-value problem (3.1). From (3.1b), the term containing β− acts like an
external pressure on the free surface, and the average rate of energy dissipation by
this term can be calculated from

dE

dt
=
∫

dx Pw, (5.3)

where P = ρβ−φ− is the equivalent pressure from the dissipation term, and w = (φ−)z
is the vertical velocity of the free surface. Using (5.1), we obtain

dE

dt
≡
(g

h

)5/2ρ

g
a2

1a2
2F, F =

(
h

g

)5/2
β−gI2

0ω−
2k−
(
β−2 + 4µ2ω−2

)
tanh k−h

2
[(
ω2∗ − ω−2

)2 + β−2ω−2
]2 , (5.4)

where the dimensionless average dissipation rate F is independent of a1 and a2.
Figure 1(a) shows a sample variation of F as a function of ω1 and ω2 for a specific

value of β−
√

h/g. Clearly F = 0 for ω− = 0, and F generally increases with ω−.
Note that figure 1(a) is strictly valid only for |ω1 − ω2|/(ω1,2)� O(1), an underlying
assumption of the analysis so far. Figure 1(b) plots the variation of F as a function
β−/ω− for fixed ω1

√
h/g and ω2

√
h/g. As expected, F = 0 for β− = 0. Interestingly,

F has an extremum at a particular value of β− = β−max . From (5.4), we can show that
this extremum occurs at

β−max
ω−
= 1

2

[
6A − 24µ2 + 2

(
9A 2 − 56µ2A + 144µ2

)1/2
]1/2

, (5.5)

where A = [ω2
∗ − ω−2]2 /ω−4. The maximum damping rate Fmax at β−max is now

obtained but the expression is complicated. Some simplification is obtained for the
case of µ� 1, yielding

Fmax ≡ F|(β−=β−max ) ≈
(

h

g

)5/2 gI2
0k− tanh k−h

8µω−3
, (5.6)

which shows explicitly the expected Fmax ∼ µ−1 dependence.
Figures 2(a) and 2(b) respectively show the value of β−max as a function of ω1 and

ω2; and extremum energy dissipation rate Fmax . Note that β−max generally increases for
increasing |ω−| = |ω1 − ω2|. For given |ω−|, β−max increases with ωi

√
h/g, as expected,

so that a higher damping coefficient is required with greater frequency (relative to
depth). In figure 2(b), for increasing |ω1 − ω2|, Fmax also increases, with a rate that is
greater for small ωi

√
h/g. Note that each point in this figure corresponds to a different

value of the damping coefficient β−max , so that the contours of Fmax indicate the
maximum damping rate achievable rather than its variation with ωi

√
h/g for a given

physical problem (cf. figure 1a).
We remark that the argument associated with (5.3) obtains the total damping rate

of the system but not the (damped) evolution of a1, a2, which is one of the primary
objectives of these analyses. To obtain these, we return to the form of the energy
equation (4.6), but now include explicitly the effect of damping on a−:

da1

dt
= γ1a2a−f (t),

da2

dt
= γ2a1a−f (t),

da−
dt
= γ−a1a2f (t)− ν−a−, (5.7)
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FIGURE 1. (a) Dimensionless damping rate F (equation (5.4)) as a function of the
frequencies of the primary short waves ω1, ω2 for damping coefficient β−

√
h/g = 0.11.

(b) Dimensionless damping rate F as a function of damping coefficient β−, for ω1
√

h/g =
0.48 and ω2

√
h/g = 0.65, obtained from: perturbation theory (5.4) (- - -); energy argument

from (5.8) (– · –); and direct simulation (——).
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FIGURE 2. (a) Value of damping coefficient β−max
√

h/g (equation (5.5)) for maximum
damping rate as a function of ω1, ω2. (b) Maximum damping rate Fmax (equation (5.6)) as
a function of ω1, ω2.

where ν− is the damping coefficient in this model. The evolutions a1(t), a2(t) can be
obtained by integration once ν− is known, and the solution is complete if ν− can be
related to the original damping coefficient β−.

To achieve that, we match the total dissipation rates of the two models. From (5.7),
and noting that

∑
iqiγi = 0, i= 1, 2,−, we obtain the dissipation rate of (5.7):

dEν
dt
=−2ν−q−a−2. (5.8)

To find an (approximate) expression for a− in (5.8), we obtain its solution for small
time from (5.7) with a1 ≈ a1(0), a2 ≈ a2(0):

da−
dt
+ ν−a− = γ−a1(0)a2(0) cos(µω−t/2). (5.9)

Equation (5.9) has an analytical solution:

a− = γ−a1(0)a2(0)
[
ν− cos(µω−t/2)+ ω−/2 sin(µω−t/2)− ν−e−ν−t

ν−2 + ω2−/4

]
. (5.10)
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Substituting (5.10) into (5.8), taking the average, and equating the final result to (5.4),
we obtain finally ν− = ν−(β−). The expression is complicated, but simplifies for the
case of µ� 1, after some algebra, to

ν− = β−/4. (5.11)

6. Numerical results
The general problem of interest contains a spectrum of incident wave components

forming multiple combinations of three-wave systems of the kind we have
considered. With increasing time, the amplitudes of these components evolve, forming
potentially new near-resonant combinations. The extension of the analysis to include
multiple/coupled (near) resonances is, in principle, possible but not straightforward. To
study the long-term behaviour of multiple interacting waves and also to provide a
validation of our analytical results, we utilize the highly efficient direct numerical high-
order spectral (HOS) scheme (Dommermuth & Yue 1987) which has been extended to
general finite depth (Liu & Yue 1998; Alam, Liu & Yue 2010). The method has been
well documented and validated (see Liu & Yue 1998, for extensive convergence tests
and validations) and will not be described here. For the present application, we include
the damping associated with β− in the HOS by modifying the free-surface dynamic
boundary condition (Wu, Liu & Yue 2006).

For the direct numerical simulation of the present problem, we use a typical
(periodic) domain length of kiLx & 16, with Nx = 128 Fourier wavenumber modes,
and time step ω11t, ω21t . 0.1 (in a fourth-order Runge–Kutta scheme). In all the
simulations below, we use nonlinear order M = 3. With these parameters, all the
numerical results presented are converged to . 1 %.

We first check the analytic prediction of the evolution of a− given by (5.2).
Figure 3(a) compares the amplitude envelop (5.2) and direct simulation results for
different values of damping coefficient β−. For β− = 0, we see the oscillatory energy
exchange between the sub-harmonic long wave and the propagating short waves due to
harmonic generation. For β− > 0, the amplitude evolutions take the form of a damped
oscillation settling after long time towards a steady-state finite asymptotic value. The
oscillation amplitudes become smaller with increasing β− and eventually become
over-damped beyond some critical value of β−/ω− ∼ O(1). The damped oscillatory
behaviour (with period close to Tmod = 4π/(µω−)) is explicit in (5.2). The steady-state
amplitude is given by the coefficient of (5.2) and is shown to decrease monotonically
with increasing β−. The comparisons between theoretical and direct (HOS) numerical
predictions are satisfactory. The discrepancy is mainly at the (positive) peaks, where
the simplifying assumption of constant a1, a2 in (5.2) is expected to be least valid.
For the large-β− case, for which (5.2) becomes less valid, the discrepancy is more
pronounced (and more uniform in time).

The analytical behaviours of a1(t) and a2(t) obtained from quadrature of (5.7)
with (5.11) are plotted in figure 3(b). The β− = 0 case reflects the oscillatory nature
of the harmonic generation energy exchange. The oscillation period (obtained from
quadrature) is close to Tmod , consistent with the behaviour of a−. In all β− > 0
cases, the evolution is marked by near-monotonic (with small-amplitude modulations
mainly associated with Tmod ) decrease in amplitude of the shorter a2 wave, (partially)
compensated by the monotonic increase of amplitude a1 of the longer primary wave.
In these figures, the rate of decrease of a2 is always greater than the rate of increase
of a1 (the total energy of the system here decreases in time according to (5.8)).
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FIGURE 3. Amplitude envelope for respectively β−/ω− = 0, 0.09, and 0.79 (from top to
bottom). The figure validates the sub-harmonic envelope modulation by second-order theory
developed here (equation (5.2), - - -) against high-order direct simulation (——). Parameters
are k1h = 1.0, k2h = 1.2, k1a1 = 0.010, k2a2 = 0.012. Simulation parameters are M = 3,
N = 128, and T1/δt = 64.

The HOS predictions are also plotted. The comparisons with theory are remarkably
satisfactory.

The results for other values of k1,2h show qualitatively similar features. Figure 4
compares the evolutions of primary wave amplitudes obtained with different
combinations of k1h and k2h (with fixed k−h and β−). For all cases, the analytic
solution compares well with the direct simulation result. For larger k1h and k2h, a2 (a1)
attenuates (grows) with time at slower rate, resulting a slightly smaller total dissipation
rate of the triad system (cf. figure 1a).

The total dissipation rate of the system (via damping of the long sub-harmonic
wave) is a primary interest. The dissipation rate predicted from energy considerations
through the evolution (5.7) is plotted in figure 1(b), compared to that obtained from
direct evaluation of the power loss (equations (5.3), (5.4)). Also plotted is the HOS
predictions. Qualitatively, the predictions are similar with an extremum at almost the
same value of β−max/ω− ≈ 0.5. Quantitatively, (5.7) and HOS are closer since both
account for the evolution of a1, a2, while (5.4) does not. The latter is strictly valid for
small initial time, which is indeed the case in figure 1(b).

Note that the present work considers the dissipation rate in time (in a space-periodic
system). Its counterpart, the dissipation rate in space, can be obtained by scaling
the time dissipation rate by the wave group velocity (Wu et al. 2006; Alam, Liu
& Yue 2009a,b). For the parameter ω−

√
h/g = 0.17 in figure 1(a), as an example,
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FIGURE 4. Amplitude envelope of primary short waves (a1, a2) for fixed β−/ω− = 0.06 and
(k2 − k1)h = 0.2 but different primary wavenumber combinations: (k1h, k2h) = (0.5, 0.7),
(1.0, 1.2), and (2.0, 2.2). Plotted are the analytic solution from (5.7) (- - -) and direct
simulation (——) with initial amplitudes a1/h= a2/h= 0.01.

the space dissipation rate at respectively frequency f = ω/2π = 0.060 Hz (0.43 Hz)
and depth h = 2 m (4 m) in figure 3 of Elgar & Raubenheimer (2008) corresponds
to dimensionless time dissipation rate β/ω ' 0.4 (0.08) in figure 1(b). It is seen
from figure 1(b) that the value of β/ω ' 0.4 is close to the maximum dissipation
rate of short waves that we predict (achieved through sub-harmonic near-resonance
interactions).

We remark that figures 3(b) and 4 show the still relatively early stage of the a1, a2

evolution. Because of the assumptions inherent in (5.11), the theoretical results are
strictly valid only up to εωit = O(1) time. Using the HOS, we are able to perform
simulations (not shown here) for much longer time (up to ε2ωit = O(1)) to obtain the
final asymptotic behaviours: a1 approaching steady-state constant, and a2 decaying to
zero.

To illustrate the evolution features of multiple components of incident waves
undergoing the sub-harmonic dissipation mechanism we consider, we simulate the
nonlinear interactions involving multiple (near) resonances using the HOS. To isolate
the sub-harmonic dissipation mechanism, we choose a relatively narrow Gaussian
spectrum of short waves whose sub-harmonic long waves are damped by bottom
dissipation (figure 5a). The effective wave steepness of the spectrum we use is
kpHs/2 = 0.06 where kp is the peak wavenumber and Hs the significant wave
height. The spectral evolution obtained with and without the bottom dissipation is
shown in figure 5(b). In the absence of bottom dissipation, the peak of the wave
spectrum is only slightly decreased (due to energy transfer to sub-harmonic and
superharmonic wave components). When the sub-harmonic wave dissipation effect is
included, however, the spectrum is qualitatively transformed with significant amplitude
attenuation and frequency downshift. For evolution times of t/T = 500, 5000, and
8000 (where T is the peak period), respectively, figure 5(b) shows that the total
energy of the incident wave spectrum is decreased by 7 %, 69 % and 88 %, due to the
nonlinear sub-harmonic dissipation mechanism.

7. Conclusion
We consider the canonical problem of near-resonant interaction among two short

propagating waves and a sub-harmonic long wave, including dissipation of the latter
that may come from bottom interactions. We obtain analytic perturbation predictions
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FIGURE 5. (a) Initial wave spectrum (——) and damping coefficient β normalized by
ω− = 0.8 (- - -). (b) Time evolution of the wave spectrum at initial time (——) and times
t/T = 500, 5000 and 8000 with bottom damping (- - -) and without bottom damping (– · –).

of the evolution of the amplitudes of the interacting waves: damped oscillation toward
finite steady state of the sub-harmonic wave, and the overall energy loss of the
short waves with decreasing/increasing amplitudes of the shorter/longer of the primary
waves. An important finding is the existence of a damping coefficient value (for given
primary wave frequencies and water depth) at which the energy dissipation rate of
the total system is maximized. The theoretical predictions are validated against direct
numerical simulations with excellent comparisons.

The present work elucidates a possible mechanism and provides quantitative
predictions for significant energy transfer from short waves to long waves travelling
over a dissipative bottom. Despite the canonical problem we consider involving
a single triad, the results provide a physically plausible explanation of recent
observations of strong short-wave attenuation as they travel over (dissipative) muddy
seafloors (Sheremet & Stone 2003; Sheremet et al. 2005; Elgar & Raubenheimer
2008). The application of the present work to the general problem involving broad-
band wave spectra and multiple/coupled resonances (over bottom bathymetry), and
hence possible direct comparisons to field measurements, is of practical importance
and is the focus of ongoing research.
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