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ABSTRACT
Similar to the mechanism by which a visco-elastic mud

damps the energy of overpassing surface waves, if the near-shore
seafloor is carpeted by an elastic thin material attached to gen-
erators (i.e. dampers) a high fraction of surface wave energy
can be absorbed. Here we present analytical modeling of the
flexible carpet wave energy converter and show that a high effi-
ciency is achievable. Expressions for optimal damping and stiff-
ness coefficients are derived and different modes of oscillations
are discussed. The presented wave energy conversion scheme is
completely under the water surface hence imposes minimal dan-
ger to boats and the sea life (i.e. no mammal entanglement). The
carpet is survivable against high momentum of storm surges and
in fact can perform well under very energetic (e.g. stormy) sea
conditions, when most existing wave energy devices are needed
to shelter themselves by going into an idle mode.

I am honored to be a colleague of Prof. Ronald Yeung at
the University of California, Berkeley. He is a world renowned
scientist of ship hydrodynamics with several valuable and key
contributions to the field. This manuscript on a new ocean wave
energy extraction scheme is due to Ron’s recent interest in the
field of ocean renewable energy. I am looking forward to years
of working closely with him. Thank you Ron.

INTRODUCTION
Gade (1) reports a place in the gulf of Mexico known to lo-

cals asmud holewhere due to the accretion of mud banks has
turned into, for the local fishermen, a safe haven against strong
waves during storms. Within the mud hole the interaction of sur-

face waves with the mud is very strong such that waves com-
pletely damped out within a few wavelengths (2). Observations
of strong wave damping due to the coupling with the bottom mud
is not limited to the gulf, but almost anywhere with a muddy
seafloor (e.g. 3; 4; 5).

If mud can take a substantial energy out of incident surface
gravity waves, an artificial carpet deployed on the seabed that re-
sponds to the action of the overpassing waves in the same way as
the response of a mud-layer must be able to extract the same
amount of energy. Analysis of performance of this synthetic
seabed-carpet wave energy conversion technique is the subject
of this article.

The complicated nature of the seafloor mud and the wide
range of mechanical/material properties which may be location
and even time dependent, has aroused a great deal of research on
this subject in the past. For understanding wave-mud interactions
several models have been incorporated including, but not limited
to, Newtonian (6), non-Newtonian (7; 8), viscoelastic (9; 10),
porous (11), poro-elastic (12), and bottom friction (13). The cor-
rect model in general is yet a matter of dispute (14; 15), how-
ever, under the periodic forcing a viscoelastic model has been
shown to be a very good approximation and is now widely used
(16; 17). While the general idea presented here can incorporate
any mud model, for specificity, we focus our attention on a linear
viscoelastic model.

In this paper we consider a seabed-carpet composed of car-
pet mass attached to sets of vertically acting linear springs and
generators, with the generator’s action modeled to be linearly
proportional to the vertical speed. We show that the coupled
governing equation of waves/carpet system admits two modes
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Figure 1. Schematic of the configuration considered in this paper. A

visco-elastic carpet is mounted on the seafloor that extracts energy from

overpassing surface waves. The carpet (with distributed mass m∗) is

restricted by distributed springiness and damping coefficients of k∗,b∗

respectively.

of propagating wave solution (§1): a surface mode wave whose
frequency and wavenumber in the limit of deep water tend
to the frequency and wavenumber of free propagating surface
gravity waves, and a bottom-mode wave whose frequency is
much higher (for a relatively stiff bottom) or much lower (for
a relatively flexible bottom) than the surface wave of the same
wavenumber. For a surface-mode the higher the wavelength, the
higher the energy extraction by the bottom. This is in agree-
ment with most observations of long waves damped by the bot-
tom mud (7). For a bottom-mode wave, however, the energy
extraction increases as the wavelength decreases (§2,3). Aside
from attractiveness of this feature of a bottom-mode wave for
the wave energy community, it may also provide an explanation
for the recent observation (yet unexplained) of strong short wave
damping by (5)(see also 18).

Since the idea presented here is more efficient in shallow
waters, and since due to shoaling the effect of nonlinearity in-
creases in shallower depths, we further formulate the weak non-
linear problem for long waves (§3). Governing equations up to
second order are presented and discusses are provided.

The presented wave energy conversion device is completely
under the water surface hence imposes minimal danger to boats
and the sea life (i.e. no mammal entanglement). The carpet is
survivable against high momentum of storm surges and in fact
can perform even better under very energetic (e.g. stormy) sea
conditions, when most existing wave energy devices are needed
to shelter themselves by going into an idle mode. The proposed
idea and its variations may also be used to create localized safe
havens for fishermen and sailors in open seas, or if implemented
in large scales to protect shores and harbors against strong storm
waves.

1 Governing Equation
We consider the irrotational motion of a homogeneous invis-

cid incompressible fluid with a free surface over a flexible carpet
placed at the mean bottomz= −h. Linearized governing equa-
tions ignoring surface tension is

∇2φ = 0 (1.1a)

φtt +gφz= 0 @z= 0, (1.1b)

φz−ηb,t = 0 @z=−h, (1.1c)

m∗ηb,tt +b∗ηb,t + k∗ηb +Pb = 0 @z=−h, (1.1d)

φt +gηb +
Pb

ρ
= 0 @z=−h. (1.1e)

wherem∗, b∗ andk∗ are respectively mass, viscous damping and
stiffness coefficient per unit length. The combination of the last
three boundary conditions (1.1c)-(1.1e) give

m∗φ,ztt +b∗φ,zt+(k∗−ρg)φ,z−ρφ,tt = 0 @z=−h (1.2)

General solution to the Laplace’s equation (1.1a) is

φ =
(

Aekz+Be−kz
)

ei(kx−ωt) (1.3)

where upon substitution into the free surface boundary condition
(1.1b) yields

B= A
gk−ω2

gk+ω2 (1.4)

and from (1.2) we obtain

(µ+R tanhµ)Ω4+2iµζΩbΩ3−µ(Ω2
b+µtanhµ)Ω2

−2iµ2ζΩbΩ tanhµ+µ2(Ω2
b−R ) tanhµ= 0, (1.5)

which is the dispersion relation in terms of dimensionless vari-
ables

Ω = ω
√

h/g, R =
ρh
m∗ , ζ =

b∗

2
√

k∗m∗ ,

µ= kh, Ωb =

√

k∗

m∗
√

h/g.

whereΩ is the dimensionless frequency,R is the ratio of the
mass of fluid above to the mass of the carpet (for a given area),
ζ is dimensionless damping ratio,µ is shallowness andΩb is the
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dimensionless bottom natural frequency (in the absence of fluid
on top). Note that limiting cases ofk∗ → ∞ and m∗ → ∞ are
equivalent of a rigid bottom and (1.5) readily reduces to the flat
bottom dispersion relation.

In the limit of deep water (µ≫ 1) equation (1.5) is further
simplified to

(Ω2−µ)
[

(µ+R )Ω2+2iµζΩbΩ+µ(R −Ω2
b)
]

= 0. (1.6)

The first parenthesis shows the asymptotic convergence of the
surface-mode to the deep water wave dispersion relation while
its damping goes to zero.

The first parenthesis is simply the dispersion relation of deep
water waves. Clearly bottom damping has no effect on waves in
this mode. The second parenthesis is the dispersion relation of
what we call thecarpet mode. We will show later that in this
mode, converse to the surface mode, effect of dampingincreases
as the water depth increases. For stable propagating waves, i.e.
to have non-growing results, we need to always haveℑ(Ω) < 0
(c.f. (1.3)). For this to satisfy in (1.6) it can be shown that it is
necessary to have

Ω2
b < R . (1.7)

In physical space this requirement is equivalent tok∗ > ρg and
means the restoring force acting on any perturbation on the car-
pet has to be higher than the weight added to the carpet due to
that perturbation. Under condition (1.7) and in the absence of
the dissipation (i.e.ζ =0) equation (1.6) has two pairs of real
solutions (c.f. fig. 2a): the surface wave mode for which sur-
face amplitude is higher than carpet amplitude but surface and
bottom undulations are in phase, and, the carpet mode for which
bottom amplitude is higher but surface and bottom undulations
haveπ radian phase difference (fig. 2b). Asµ→ ∞ surface mode
frequencyΩs increases proportional toΩs∞ ∝ √

µ while carpet
mode frequencyΩc asymptotically tends toΩc∞ ∝ (Ω2

b − R).
Also from (1.5) in the limit ofζ = 0,µ = 0 it can be shown
that Ωs0 = Ωb/

√
1+R, therefore no wave with the frequency

(Ω2
b−R)< Ω < Ωb/

√
1+R can exist. The band-gap is shaded

with gray in fig. 2a.
Now let’s consider the case whereζ 6= 0. In this case and if

bottom-mode roots of (1.6) are sought, it can be further shown
that a bifurcation in behavior occurs at a critical damping ratio

ζcr =

√

(Ω2
b−R )(µ+R )

µΩ2
b

. (1.8)

For ζ > ζcr and for any givenµ we obtain thatΩc = ix1, ix2

wherex1,x2 ∈ R
−,x1 6= x2. If ζ < ζcr thenΩc = ix3± x4 where
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Figure 2. (a) Roots of the dispersion relation in the absence of damping

(ζ =0). Parameters are R = 1000and Ωb =32. Plotted are roots of

(1.5) (——), and (1.6) (· · ·). Shaded region is the band-gap for which

corresponding frequencies do not exist. (b) Ratio of bottom to surface

amplitudes ab/as for which the same notation as in (a) is used.

x3,x4 ∈ R
−. Clearly atζ = ζcr the oscillatory motion of the

bottom-mode diminishes and waves decay exponentially to zero.

Real and imaginary part of the solutionΩ of (1.5) for a
fixed R =1000,Ωb=0.32 andζ=1.7,3.4 are shown in figure 3,
along with the bottom to surface amplitude ratios and deep water
asymptotes.

The real part of frequency of surface mode waves,ℜ(Ωs),
experience minimal change compared to the undamped case. The
imaginary part of a surface mode wave,ℑ(Ωs), starts from a fi-
nite negative value (corresponds to finite decay rate) and asymp-
totically decreases to zero as waves get shorter. This is ex-
pected and in agreement with existing theories and observations
of stronger long wave (compared to short wave) damping. The
behavior of the bottom mode waves are however more complex.
As explained earlier roots of the bottom mode bracket of (1.5)
show a bifurcation at a critical (dimensionless) depth.
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Figure 3. see fig. 4 for the caption

2 Approximate damping rate

we consider wave in a homogeneous fluid bounded by pe-
riodic side-boundary conditions, free surface and a visco-elastic
bed. In two dimension, the governing equation for the bottom is

m∗η̈b+b∗η̇b+ k∗ηb = p(t) (2.9)

wherem∗,b∗ andk∗ are mass, damping coefficient and stiffness
coefficient of the bottom per unit length per unit depth.p(t) is
the pressure at the mean bottomz=−h.

If pressure is periodic in time, sayp(t) = p̃0cos(ωt), the
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Figure 4. Real and imaginary branches of the solution Ω(µ) to the dis-

persion relation (1.5) for R = 1000, Ωb = 0.32and ζ = 1.7 (left col-

umn) and ζ = 3.4 (right column). Also plotted is the ratio of the bottom

amplitude to the surface amplitude. Dashed curves are branches asso-

ciated with the surface mode and solid curves are associated with the

bottom mode. Note the bifurcation at µcr=3.62 and µcr=1.23 (c.f.(1.8)).
Branches of deep-water asymptotes (1.6)are also plotted for comparison

(· · ·).

solution to this ordinary differential equation is well known

ηb =
p̃0

[(k∗−m∗ω2)2+b∗2ω2]
1
2

cos(ωt −φ) (2.10)

where the phase shift is given by

φ = tan−1
(

b∗ω
k∗−m∗ω2

)

(2.11)

The power loss per unit horizontal length due to the damping of
the bed is

Pow(x, t) = b∗ η̇2
b = p(t) η̇b (2.12)

and the time average power loss is given by

P̄ow=
1
2

bp̃0
2ω2

[(k−mω2)2+(bω)2]
(2.13)

For a monochromatic progressive wave, this is the power loss
per unit length. For standing wave, the power loss is half of this
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value due to another averagin over the wave length that introduce
a factor of one-half.

The energy contained in one wave-length of a progressive
wave

η = asin(kx−ωt) (2.14)

φ =−ag
ω

coshk(z+h)
coshkh

cos(kx−ωt) (2.15)

is

Eλ =
1
2

ρga2λ (2.16)

or Ew = 1/2ρga2 per unit length (see for example 19, section
2.2). Note that the energy of standing wave is half of propagatin
wave with the same amplitude and wave number.

Pressure at the mean bottom is

p(x, t) = −ρ[φ,t +gz] @z=−h (2.17)

=
ρga

coshkh
sin(kx−ωt)+ρgh (2.18)

The first terms is the dynamic pressure due to the presense of
the wave hence decreases as depth increases. At the limit when
kh≪ 1 the hydrostatic pressure of shallow water wave is recov-
ered. The second term is just the hydrostatic pressure due to
the water column and only changes the set point of our mass-
spring-damper system and therefore does not play any role in the
damping process. To find the rate of amplitude decay we write

dEw

dt
= P̄ ⇒ da

dt
=−C a ⇒ a= a0e−Ct (2.19)

C=
1

2cosh2kh
· ρgb∗ω2

[(k∗−m∗ω2)2+(b∗ω)2]
(2.20)

=
1

2cosh2kh
· 2ζκΩ̃
[(1− Ω̃2)2+(2ζΩ̃)2]

·ω (2.21)

whereκ = ρg/k∗

3 Nonlinear Shallow Water
The idea presented here is more likely to be employed in a

shallow water regime. For this purpose in this section we derive
weakly nonlinear shallow water equations governing wave prop-
agation over a visco-elastic bottom carpet. Full nonlinear gov-

erning equations of waves over time-dependent bottom is given

∇2φ = 0 −h(x, t)< z< ηs (3.22a)

ηs,t +ηs,xφ,x = φ,z z= ηs (3.22b)

φ,t + 1
2(∇φ)2+gηs= 0 z= ηs (3.22c)

−h,t −h,xφ,x = φ,z z=−h(x, t) (3.22d)

where−h= −h0+ηb andh0 is the average bottom depth. The
following scales are introduced to dimensionless the governing
equations

x′ = kx, z′ =
z
h0

, t ′ = k
√

gh0t, η′
s =

ηs

a
, η′

b =
ηb

a
,

φ′ =
kh0

a
√

gh0
φ, h′ =

h
h0

, P′ =
P

ρgh0
(3.23)

wherek,a andg are respectively the characteristic wave-number,
characteristic amplitude and the acceleration gravity andP is the
pressure. Upon substitution into the governing equation, after
dropping prims we get

µ2φ,xx+φ,zz= 0 −h< z< εηs (3.24a)

µ2(ηs,t + εηs,xφ,x) = φ,z z= εηs (3.24b)

µ2(φ,t +ηs)+
1
2ε(µ2φ2

,x+φ2
z) = 0 z= εηs (3.24c)

−µ2(h,t + εh,xφ,x) = φ,z z=−h (3.24d)

where

µ≡ kh0 ≪ 1, ε ≡ a
h0

≪ 1 (3.25)

are indicators of the shallowness and the nonlinearity respec-
tively. The ratio of nonlinearity to the shallowness

Ur =
ε
µ2 (3.26)

is called the Ursell’s number. We assume a solution in the form

φ =
∞

∑
0

[z+h(x, t)]nφn(x,y) (3.27)

From Laplace’s equation i.e., equation (3.24a) we have

φn+2 =−µ2 φn,xx+2(n+1)h,xφn+1,x+(n+1)h,xxφn+1

(n+1)(n+2)[1+µ2h2
,x]

(3.28)
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and the boundary condition equation (3.24d) gives

φ1 =− 1
Ur

h,t + εh,xφ0,x

1+µ2h2
,x

(3.29)

AssumingUr = O(1) andh = 1− µαηb(x, t) whereα ≥ 1, we
concludeO(h,x = O(h,x) =O(µα)≪ 1 after some algebra we get
to the final equations correct to the order ofO(µ2) = O(ε):

H ,t + ε(H ū),x = 0 (3.30)

ū,t + εūū,x+ηs,x−
µ2

3
ū,xxt + f (x, t) = 0 (3.31)

P= (εηs− z)+O(εµα) (3.32)

where

H = h+ εηs, ū=
1
H

∫ εηs

−h
φ,xdz (3.33)

are the total depth from the free surface and the depth average
velocity, and

f (x, t) =
1

Ur

[

h,xh,tt +
1
2
H ,th,xt −

1
2
H h,xtt −H ,xh,tt

]

=
1

2Ur

[

µαηb,xtt +µ2α(ηb,tηb,xt −ηbηb,xtt)
]

(3.34)

when the bottom is not a function of time, equations (3.30) and
(3.31) reduce to equations (12.1.47) and (12.1.48) of (20) with
the assumption of small amplitude topography. Close to the bot-
tom, the error in the pressure term drops toO(εµ2α).

Assumingα = 2, i.e., the bottom variation is as big as
the surface perturbations, we can combine equations (3.30) and
(3.31) to get

ηs,tt −ηs,xx−
1

Ur
ηb,tt = ε{(uux),x− (ηsu),xt}+

µ2
{

(ηbu),xt −
1
3

u,xxxt +
1

2Ur
ηb,xxtt

}

(3.35)

the bottom governing equation in the dimensional space is

m∗ηb,tt +b∗ηb,t + k∗ηb =−P= ρg(ηs−ηb) (3.36)

wherem∗,b∗ andk∗ are respectively mass, damping coefficient
and stiffness coefficient per unit area in a three dimensional prob-
lem. Note that we assumeηb is measured from the equilibrium

position of the bottom where spring resists the pressure of still
waterρgh0. In dimensionless form

α1ηb,tt +α2ηb,t +(α3−1)ηb =−ηs (3.37)

where

α1 = µ
km∗

ρ
, α2 = µ

b∗

ρ
√

gh
, α3 =

k∗

ρg
. (3.38)

Now we introduce two space variablesx andX = µ2x and expand
ηs,ηb andu in power series as follows

ηs(x,X; t) = ηs0+µ2ηs1+O(µ4) (3.39)

ηb(x,X; t) = ηb0+µ2ηb1+O(µ4) (3.40)

u(x,X; t) = u0+µ2u1+O(µ4) (3.41)

upon substitution into equation 3.35, the perturbation equations
are obtained

ηs0,tt −ηs0,xx−
1

Ur
ηb0,tt = 0 (3.42)

ηs1,tt −η1,xx−
1

Ur
ηb1,tt = ε{(u0u0,x),x− (ηs0u0),xt}

+ µ2
{

2ηs0,xX+(ηb0u),xt

−1
3

u0,xxxt +
1

2Ur
ηb0,xxtt

}

(3.43)

Using equation (3.37) zeroth order equation (3.42) can be written
in terms of a single variableηb0

α1(ηb0,tttt −ηb0,ttxx)+α2(ηb0,tt −ηb0,xx),t +

(α3−1+Ur
−1)ηb0,tt − (α3−1)ηb0,xx= 0. (3.44)

If the damping coefficient is zero, the solution to the linear
problem is given by

ηs = ηs0ei(kx−ωt) (3.45)

with

ηb = ηb0ei(kx−ωt) (3.46)

u = u0ei(kx−ωt) (3.47)

6 Copyright © 2012 by ASME



where in dimensional form

ηb0 =
ρg

m∗ω2− (k∗−ρg)
ηs0 =

(

1− ghk2

ω2

)

ηs0, (3.48)

u0 =
gk
ω

(3.49)

and has a dispersion relation in the form

ω4−ω2
(

ghk2+
k∗

m∗

)

+ghk2k∗−ρg
m∗ = 0. (3.50)

In dimensionless format we get

ηs0 = η0
s0ei(kx−ωt), η0

b0 =

(

1− 1
c2

)

η0
s0, (3.51)

u0
0 =

1
c

η0
s0 (3.52)

where c = ω/(k
√

gh) is the dimensionless wave speed and
a
√

gh/h is used to nondimensionlize the velocityu. Therefore

ηs0 = ζ(σ), ηb0 =

(

1− 1
c2

)

ζ(σ), u0 =
1
c

ζ(σ) (3.53)

whereσ = x− ct.
Since the dispersion relation (3.50) is a nonlinear equation,

in general,(2k,2ω) do not satisfy it. Therefore the nonlinear
terms on the right hand side of the first order governing equation
(3.43) do not resonate first order solution while linear terms do.
To avoid unbounded resonance forηs1 we must have

2ηs0,xX−
1
3

u0,xxxt +
1

2Ur
ηb0,xxtt = 0 (3.54)

Taking one integration with respect tox and substituting from
equation (3.53), we end up getting

ζ,X +βζ,σσσ = 0 (3.55)

β =
1
6
+

1
4Ur

(c2−1) (3.56)

Assuming a periodic solution both in time and space in the form

ζ = ζ0ei(k∗X+ω∗σ) (3.57)

we get the dispersion relation for the envelope

k∗ = βω∗3 (3.58)

For c2 < 1− 2Ur
3 , the envelope moves in the same direction that

the original wave is moving while for higher values it moves in
the opposite direction.

4 Conclusion
We presented formulation of a flexible (visco-elastic) sea

floor carpet composed of mass of the carpet and vertically act-
ing spring and generators with the latter modeled as a linear vis-
cous damper. We showed that the coupled system of gravity
waves and our carpet admits two modes of propagating waves:
the surface-mode and the bottom-mode. The major difference
between the two mode is that the rate of decay of a surface-
mode wave is higher for longer waves, whereas for a bottom-
mode shorter waves are damped faster. The idea presented here
can, essentially, incorporate any mud model and its performance
under different models/assumptions may worth further investiga-
tion. Specifically the performance may be substantially increased
if frequency-dependent damping and stiffness coefficients are
incorporated (see e.g. 16). While the discussion on the engi-
neering aspects and implementation issues of the presented idea
is beyond the scope of this manuscript, it was brought to our
attention that a flexible membrane (floating) wave energy con-
verter (named Lylipad), sharing most of its implementation as-
pects with our flexible carpet, is already under the investigation
by the industry.
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