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Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed
features (the so called Bragg resonance) can be utilized to create equivalent of lenses and curved
mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the
seafloor topography and therefore are surface non-invasive, can focus/defocus energy of incident
waves toward or away from any desired focal point. We further show that for a broadband incident
wave spectrum (i.e. a wave group composed of multitude of different-frequency waves) a polychro-
matic topography (occupying no more that the area required for a monochromatic lens) can achieve
a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave
zones (e.g. for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in
order to create protected areas (e.g. harbors or areas near important offshore facilities). In reverse,
lensing of oceanic waves may be caused by natural seabed features and may explain the frequent
appearance of very high amplitude waves at certain bodies of water.

I. INTRODUCTION

Seafloor irregularities affect overpassing surface grav-
ity waves via a number of linear and nonlinear
mechanisms[1]. For instance weakly nonlinear waves
traveling over a randomly rough seabed are damped as a
result of seafloor’s irregularities dispersing the energy of
overpassing waves to all spatial directions and at nearly
all wave frequencies [2–4] (This spatial attenuation is
called localization[5] because of its common root with
Anderson localization in solid-state physics[6]). If seabed
corrugations follow specific patterns (i.e. they are not
random) then they can excite a number of resonance phe-
nomena between surface waves (depending on the condi-
tions satisfied [7–12]). Resonance of surface waves via
bottom undulations is called Bragg resonance named af-
ter its close cousin phenomenon in solid state physics of
crystals [13].

Physically speaking, if a proper Bragg resonance con-
dition is satisfied then a surface wave can excite a new
(resonant) surface wave in a new direction different than
its own original direction (so-called class I,II), or, two
surface waves can excite a new wave with a frequency
equal to the sub- or super-harmonic of primitive waves
(so-called class III). In other words bottom ripples, un-
der Bragg resonance, act as an energy transfer bridge
enabling the energy of the incident wave(s) to flow to a
new (i.e. resonant) wave. If the interaction distance is
long enough, then the resonant exchange continues until
the entire energy of initial wave(s) is conveyed to the res-
onant wave. In perturbation expansion of the governing
equations in terms of a small parameter (usually wave
steepness ka, k being the wavenumber and a the ampli-
tude of the wave), Bragg resonance occurs at the second
order (class I), third order (so-called class II and III) and
higher orders of nonlinearities [7, 14].

Here we report a seabed corrugation architecture, de-
signed based on properties of Bragg resonance, that can
change the direction of propagation of overpassing sur-
face waves towards (or away from) a specific focal point.

The apparent first and most important application of this
idea is to converge or diverge initially parallel wave rays.
Similar to how curved lenses and mirrors focus/defocus
light beams, bottom corrugations can therefore be used
to create (surface-noninvasive) curved lenses and mirrors
for surface gravity waves. We further propose a multi-
chromatic bottom that can focus an incident broadband
wave spectrum with a very high efficiency.

II. THEORY

Consider an incident surface gravity wave of wavenum-
ber vector ki and frequency ω propagating in a homo-
geneous water of mean depth h. Assume that a finite
patch of the seabed contains small amplitude periodic
ripples with the wavenumber kb (similar to seabed sand-
bars seen in nearshore areas). Over this patch of bottom
undulations, if certain conditions between ripples’ geo-
metric properties and the overpassing surface waves are
satisfied (the so-called Bragg resonance condition), then
a new wave with the wavenumber kr and the same fre-
quency as the frequency of the incident wave (ω) will be
resonated (i.e. generated). In other words bottom rip-
ples, under Bragg resonance, act as an energy transfer
bridge enabling the energy of the incident wave to flow
to a new (i.e. resonant) wave. As a result of this energy
transfer, the amplitude of the incident wave decreases
(exponentially over the patch) and the amplitude of the
resonant wave increases in such a way that the energy
of the entire system of waves is conserved. Outside of
the patch, both incident and resonant waves continue to
travel with no further change.
Without loss of generality, we consider that the inci-

dent wave ki moves along positive x-axis. If we draw
a circle centered at the origin and with radius equal to
ki = |ki|, then any vector drawn from the origin to a
point on this circle (say kr) represents direction of prop-
agation of a resonant wave if bottom ripples wavenum-
ber vector kb satisfies the class I Bragg resonance con-
dition, i.e., kb = kr − ki[7, 14]. Under this circum-
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FIG. 1: (a) Geometric construction of the class I (triad)
Bragg resonant waves. (b) Physical implication of class I
Bragg resonance: an incident wave with the wavenumber
vector ki (assumed to move along the positive x-axis)

resonate the resonant wave kr upon interaction with the
topography with the wavenumber kb.

stance, the amplitude of the incident wave decreases (ex-
ponentially over the patch) and the amplitude of the
resonant wave increases in such a way that the energy
of the entire system of waves is conserved. Outside of
the patch, both incident and resonant waves continue
to travel with no further change (figure 1). Note that
class I Bragg resonance is a triad resonance (between
two equi-frequency surface waves ki,kr and one bottom
component kb) which is obtained at the second order
of nonlinearity in terms of wave steepness. If third or-
der nonlinearities are taken into account, then quartet
resonances are obtained between two equi-frequency free
waves and two bottom components or three free waves
and one bottom component[7]. These higher-order reso-
nances are significantly weaker (than the leading order),
and are not considered here.

Our objective is to design a patch in such a way that
the resonant waves formed at each location of the patch
are directed toward a desired focal point. If this is
achieved, a high-amplitude motion is expected at the fo-
cal point due to the superposition of the arriving resonant
waves from all over the patch. The design recipe of grav-
ity lenses, based on the theory of Bragg resonance[7], can
be simplified as follows. Consider a coordinate system in
the physical domain with x, y-axes on the mean seafloor
and z-axis positive upward. Assume that a finite two-
dimensional patch (in x− y plane) is given across which
small ripples can be placed or crafted. The focal point
can be at any location on the free surface above or far
from the given seabed patch. We specifically consider
two cases: the focal point on the upstream and on the
downstream side of the patch. In an analogy to optics,
we call these configurations respectively a concave mirror

and a convex lens of gravity waves (c.f. fig.2 a-c).

The design recipe of gravity lenses, based on the theory
of Bragg resonance, can be simplified as follows. Con-
sider any arbitrary point in the x − y plane as the fo-
cal point. For the ease of notation, assume that the
coordinate system (in physical domain) is centered at
this focal point. Also, assume that the incident wave
is a monochromatic long-crested waves propagating in
the positive x-direction. To achieve focusing at the focal

point, at any point (x, y), the resonant wave wavenumber
vector kr must be toward the center (x, y)=(0,0). There-
fore, kr has to make an angle θ = tan−1(y/x) with the
negative x-axis. Therefore,

kbx = ki(1 + cos θ), kby = ki sin θ. (1)

Note that, since bottom topography is stationary, if the
direction of the bottom wavenumber changes by ±π-
radians, the same result is obtained.
Physically speaking equation (1) says that the bottom

wavenumber (i.e. both the wavelength and the direc-
tion of ripples) at any location (x, y) of the patch must
be different that neighboring points. In order to design a
patch, that focuses wave rays toward a focal point, an ap-
proximate but handy approach is to divide the patch into
a finite number of smaller sub-patches. Then each sub-
patch is covered with uniform ripples with the wavenum-
ber equal to the mean wavenumber of the sub-patch re-
quired for focusing, say the wavenumber at the center of
that specific sub-patch (c.f. figure 1b). This approach
proves to work if sub-patches are relatively large com-
pared to wavenumber of the incident wave. However, the
focal point is not very sharp. Also discontinuities at the
edges of adjacent sub-patches causes unwanted scattering
and instabilities in overpassing waves.
Here we present a methodology that obtains the con-

tinuous geometry of ripples for the entire patch in order
to achieve an exact focusing. First, note that the bottom
wavenumber kb = kb(x, y) at each point is perpendicular
to the crests and troughs of the bottom undulations, but
both the direction and magnitude of kb is variable over
the patch. The objective is to find a continuous topog-
raphy whose local wavenumber at each location on the
patch satisfies (1). To achieve this, we define the vector
nb perpendicular to kb (and hence along the wave crests)
with the magnitude equal to the magnitude of the kb at
that location, that is,

nbx = −ks sin θ, nby = ks(1 + cos θ). (2)

It then can be shown readily that

∂nbx

∂x
+

∂nby

∂y
= 0, (3)

that is, nb = (nbx, nby) form a pseudo-velocity field
that satisfies continuity. Therefore a continuous stream-
function can be defined for the vector field nb. Since kb

is perpendicular to the streamlines of the vector field nb,
these streamlines give the same-height contours of the to-
pography (including e.g. crests and troughs). As a result,
once the ripple’s height is specified, the three-dimensional
topography can be uniquely obtained. These streamlines
are shown by dashed-lines (one wavelength apart) in fig-
ures 2b,c, and the actual topography is shown in figure
2a.
It is to be noted that if the steepness of seabed corru-

gations are small and of the same order of magnitude as
of surface waves (which is the case in the present paper),
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then the effect of bottom corrugations first appears at the
second order of nonlinearity (c.f. [7, 14]) and therefore
the interaction is nonlinear. Also since the spatial varia-
tion of the bottom is fast (same order as the overpassing
surface waves), then the ray theory in its original form
does not apply. But a modified ray theory with bottom
as quasi-linear terms may be used to find the location
and an approximate strength of the focusing.

III. DIRECT SIMULAION

To show the performance of the gravity wave lensing,
we use a high-order pseudo-spectral direct simulation
technique to numerically solve the governing equation
(Laplace’s equation) along with the associated (nonlin-
ear) boundary conditions [7, 14, 15]. This scheme is a
phase-resolved direct simulation tool that can take into
account evolution and simultaneous interaction of many
(typically N = O(104)) number of waves with an ar-
bitrary order of nonlinearity (typically M = O(10) in
terms of perturbation expansion). It has been exten-
sively investigated for convergence and cross-validation
against analytical and experimental results in different
setups[7, 14, 16–19]. Direct simulation is used here to, be-
sides validating our theoretical predictions, study in de-
tail the nonlinear problem of monochromatic/broadband
surface waves impinging upon gravity wave lenses and
mirrors.
We first study the problem of a monochromatic wave

train incidence on a concave mirror (fig.2a,b). Consider
an incident wave of steepness ǫi = kiai=0.080, where
ki, ai are respectively the wavenumber and amplitude of
the incident wave, arriving from −∞ and moving along
the positive x-axis in an open ocean of normalized wa-
ter depth kih=0.84. We set the focal point to be at
(xf , yf )=(0,0) and choose to have five ripples extending
across the seabed. Location of ripples are chosen down-
stream of the focal point and we decide they start within
the area 2λi < x < 4.5λi along the centerline and ex-
tend in ±y directions (λi=|ki|/2π is the wavelength of
the incident wave). If more number of ripples are used
stronger focusing obtains until the strength is so large
that higher-order nonlinearities start to intervene. The
area that each single ripple occupies on the seafloor is
shown by dashed-lines in figure 2.b. As shown in the fig-
ure, wavenumber of ripples change and they bend as we
move away from the y=0 axis (the ripples shape just like
a desktop concave mirror). Maximum bottom steepness
is along the centerline and is equal to ǫb = kbab= 0.64.
We perform a high-order nonlinear direct simulation

of the above case in the computational domain. Simula-
tion parameters are Nx = Ny=256, δt/Ti=30, and M=3
for which the simulation is converged. Note that class
I Bragg resonance is a second-order phenomenon and
therefore technically a second order analysis (i.e. M=2) is
enough to capture this effect. Since our spectral method
is based on Fourier expansion, the horizontal boundaries
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Focal Point

Downstream (Shadow Zone)

Seafloor

(a)

(b) (c)

FIG. 2: (a) Schematic representation of gravity wave
lensing: Incident waves enter from left and upon resonance
interaction with the (properly designed) seabed ripples get
focused at a desirable focal point. The focal point can be
designed to be on the upstream as well as downstream side

of the patch. In analogy to optics, we call these
configurations respectively a concave mirror and convex lens.
(b) Direct simulation of a concave mirror for gravity waves.

In this case, a monochromatic surface wave of
ǫi = kiai=0.080 and kih=0.84 enters from the left and upon

interaction with the rippled patch (maximum of
ǫb = kbab=0.640) its energy is focused at the designated

focal point at x/λi=0 (λi is the wavelength of the incident
wave). In the snapshot shown (t/Ti=14.7, Ti is the period of
incident wave), at the focal point ηf/ai=6.3, i.e. surface

elevation at the focal point is 6.3 times the amplitude of the
incident wave. Simulation parameters are Nx = Ny=256,
δt/Ti=30, and M=3 for which the simulation is converged.
(c) Direct simulation of a convex lens for gravity waves.

Parameters are the same as in fig. (b) except ǫb,max=0.450.
For the snapshot sown (t/Ti=9.6), ηf/ai=2.7. In both cases

the amplification factor increases by the increase in the
amplitude and number of ripples.

are periodic in both x, y directions. We choose a simula-
tion domain larger than the domain of interest and also
implement a numerical absorbing beach on the outgoing
side of the domain.

Figure 2.b shows a snapshot of the water surface after
a steady-state condition is reached. The specified focal
point area is shown by a dashed-line circle where the
amplitude grows to more than 6 times the amplitude of
incident wave. A similar case with the focal point on
the downstream side of the topography (a convex lens)
is shown in figure 2.c . In this case, we choose ǫb =
kbab=0.45 and arrive at the amplification factor of 2.7
at the focal point. The amplification factor increases by
the increase in the amplitude of the topography as well
as the increase in the area of the seabed patch.
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Analytical expression for the amplification factor at
the focal point is not readily at hand, however, an ap-
proximation of the focal amplitude height may be ob-
tained. The two-dimensional problem of Bragg resonance
of monochromatic waves over a rippled bottom can be
solved via perturbation techniques. The reflection co-
efficient, R, defined as the amplitude of reflected wave
divided by the amplitude of incident wave is given by

R(x,k,kr) =
gd(k · kr)x

4Cgrω cosh kh cosh krh
(4)

where d is the amplitude of the bottom topography, h is
the water depth, Cgr is the group velocity of the resonant
wave, x is the distance of interaction and g is the gravity
acceleration[14]. The reflection coefficient R defined in
(4) is for the two-dimensional ripples, i.e. when ripples
are infinitely long in the transverse direction extending to
±∞. For a finite-width patch (i.e. finite in the transverse
direction) no closed-form solution exists[20]. A rough
leading order approximation, hinted by results of [20],
is that the reflection coefficient can be approximated by
R∗=R δy/(2λi) where δy is the width of the patch and is
assumed to be much smaller than λi. Now the amplitude
at the focal point can be found as a summation over the
wave reflections from every piece of the patch. In the
limit the expression is

Smax = 1 +

∫ yf

y0

∫ xf (y)

x0(y)

1

2λix
R(x,k,kr) dx dy, (5)

where Smax is the ratio of the maximum amplitude at
the focal point to the amplitude of the incident wave,
y0, yf coordinates of transverse lines limiting the topog-
raphy and x0(y), xf (y) are initial and end x-coordinate
of bottom ripples correspond to each y. The first term on
the right-hand side of (5) accounts for the incident wave
and the second term (integral term) accounts for all the
reflections from the gravity wave lens. For the case of
figure 2b (Convex lens), we obtain Smax=5.6 which has
∼10% error compared to the numerically obtained value
of 6.3.
A more thorough analysis of multiple scales reveals

that the reflection coefficient (4) does not increases in-
definitely with the increase with x (which is clearly a vi-
olation of energy conservation), but over longer patches
behaves like R ∝ tanh(x). Therefore the reflection coeffi-
cient asymptotically reaches unity when the longitudinal
extend of the patch approaches infinity. In other words
the strength of the focusing increases with the increase in
the number of ripples, but the rate of growth of strength
becomes exponentially slow as the number of ripples be-
comes very large.
Bragg resonance and the resulting focusing phe-

nomenon are also achieved if there is a small detuning
between the wavenumber of incident waves and those
of bottom required to achieve a perfect resonance. The
strength of the focusing, however, decreases as the detun-
ing increases until detuning is large enough and focusing
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FIG. 3: Experimental investigation of gravity wave lensing.
(a) Experimental setup. The photo shows the middle section

of a 60m×2.4m(width)×1.8m tank at Richmond Field
Station. To measure the time evolution of the water surface
profile, a Laser Induced Fluorescence (LIF) technique was

used (greenish color is due to fluorescent dye). Ripple crests
(c.f. fig (c)) can be seen through the water and are marked

by dash-lines on the left-side of the figure. (b) The
2.4m×2.4m rippled patch before it is colored in black and
placed inside the wave tank. (c) A side-by-side comparison
of the experimental results (left) and direct simulation

results (right). The experiment is designed for a
monochromatic incident wave of ǫi=0.016, kih=1.57 and

ǫb,max=1.26. In terms of physical variables, these parameters
correspond to a water depth of 15cm, incident wave

amplitude of 1.5mm and wavelength of 60cm, topography
wavelength along the centerline of 30cm, and topography

amplitude of 6cm. (See supplementary movie 1,2)

disappears (c.f. e.g. figure 5 in [17] which is an example
how detuning affects the strength of Bragg resonance).

IV. EXPERIMENT

We also present an experimental proof of the gravity
wave lensing. We consider a case of kiai=0.157, kih=1.57
and a maximum of kbab=1.26. In the physical wave-tank
of the size of 60m×2.4m(width)×1.8m(depth), these cor-
respond to the mean water depth of 15cm, incident wave
amplitude and wavelength of respectively 1.5mm and
60cm, topography wavelength along the centerline 30cm,
and topography amplitude of 6cm. A rigid 2.4m×2.4m
three-dimensional topography was constructed by first
placing 12 CNC-machined wooden guides along the lon-
gitudinal direction. The guides were then covered with a
plastic chicken wire and then layers of fiberglass mat and
resin carefully sanded to achieve the required smooth-
ness. Laser induced fluorescence (LIF) was used to record
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the wave surface profile histories at 20 sections parallel
to the wave tank wall (see Supp. Mat. I for details).
A side-by-side comparison of the experiment and the

numerical simulation is shown in figure 3.c, where a very
good agreement is observed (for a full video see supp. vid.
1,2 and Supp. Mat. II). The maximum amplitude at the
focal point (marked with white dashed-lines in figure 3.c)
is about three times the amplitude of the incident wave.

V. BROADBAND LENSING

With the theoretical, computational and experimental
proof of the gravity wave lensing for a monochromatic
incident wave in hand, the next immediate question is
whether the lensing can be achieved in real ocean sce-
narios where an incident wave group contains a spectrum
of frequencies and composed of a multitude of (linearly
or nonlinearly) superposed wave components. Here, we
show that broadband lensing is possible through a simi-
lar mechanism. For a polychromatic incident wave train
leading order lensing is achieved by the superposition of
proper bottom undulations, each corresponding to one
subgroup of incident wave components that have close
wavelengths. This, usually, does not require an addi-
tional space than before, but just a polychromatic bot-
tom undulation, hence can be readily achieved. The ef-
ficiency of broadband lensing by this method is shown
here through a case study via direct simulation.
Consider a Gaussian spectrum with a normalized

spectral density function S∗(ωr)=0.65 exp[−21(ωr − 1)2]
where

∫
S∗dωr =

∑
j 1/2(aj/as)

2 in which ωr=ω/ωp, ωp

is the peak frequency, and as is the significant wave am-
plitude (i.e. as = Hs/2 where Hs is the significant wave
height). For a direct phase-resolved simulation, we as-
sume that the surface is composed of 7 waves at frequen-
cies ωr=0.67, 0.80, 0.93, 1.05, 1.15, 1.24, and 1.33. We
design three separate topographies corresponding to ev-
ery other waves of this list, i.e. for surface wave frequen-
cies ωr=0.80, 1.05 and 1.24. We further assume that a
specific area is provided for ripples and therefore for the
three topographies respectively 7, 10 and 13 ripples can
be placed on this area. We then superimpose these three
structures. Contours of the topography in darker and
brighter bands are superimposed to fig. 4a.
Results of the direct simulation of the broadband spec-

trum incident to this patch is shown in figure 4a,b. Figure
4a shows a surface snapshot at t/Tp=95, (Tp = 2π/ωp),
where a strong wave focusing is observed at the focal
point. At this moment, the wave height at the focal point
(Hf ) is greater than four times the significant wave am-
plitude and therefore by definition is a rogue wave at
this sea state (Hf = 2.19Hs). Long term spectra of the
incident wave, the spectrum at the focal point and down-
stream of the lens are compared in figure 4.b. Spectrum
at the focal point is much more energetic than the inci-
dent wave and reaches an amplitude more than four times
higher. As expected, the downstream spectrum has less

F

D
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FIG. 4: Gravity wave lensing for a broadband incident
spectrum. To achieve focusing in this case, the topography
needs to be polychromatic, (a) A water-surface snapshot

from direct simulation of focusing of a broadband
(Gaussian) incident spectrum. Colors show the surface
elevation normalized by the significant wave amplitude

(as = Hs/2 where Hs is the significant wave height). In the
snapshot shown, the waveheight of the wave seen at the

focal point exceeds 4as=2Hs and therefore is a rogue wave
by definition. (b) Steady state spectra at the upstream(blue
dashed line) and downstream(black dash-dotted line) of the
lensing area compared with that at the focal point (red solid

line). Clearly, the spectrum at the focal point (F) has a
much higher energy (about four times the energy of the
incident spectrum). The downstream (shadow zone)

spectrum, as expected, has a lower level of energy. In this
figure, ωp is the peak frequency of the spectrum, and

normalized spectral density function S∗(ω) is defined as∫
S∗dω =

∑
j
1/2(aj/as)

2. Simulation parameters are

Nx = Ny=512, δt/Tp=30, and M=4 for which the
simulation is converged.

energy than the incident spectrum.
Theoretical analysis, tracing of waves and interpreta-

tion of details of results in broadband lensing is more
complicated than those of monochromatic lensing. Usu-
ally when more than just a few wave components are
present simultaneously on the water, a complex network
of interwoven nonlinear interactions forms. Inclusion of
a polychromatic bottom topography further complicates
the scenario. These interactions include, for instance,
sub- and super-harmonic generations [21–23], quartet
resonance between waves [24, 25] and higher order Bragg
resonances[7, 14]. Direct simulation scheme of higher or-
der spectral method used to simulate the above cases ef-
ficiently takes all these interactions into account[17, 19].

Gravity wave lensing can, theoretically, be achieved at
any water depth and for any amplitude of ripples. The
Efficiency of lensing increases linearly with both the num-
ber and amplitude of ripples and decreases exponentially
with the increase in the water depth. This means that,
to achieve the same efficiency in a deeper water, a much
higher number of ripples are needed and/or ripples must
have much higher amplitude. Monochromatic convex fo-
cusing can also be achieved using refraction properties
of water waves[26–28]. Refraction-based focusing, how-
ever, only works for monochromatic waves, requires a
relatively large flat plate submerged but kept stationary
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close to the water surface, and has a low efficiency due
to unwanted yet unavoidable reflection of the incident
wave[29].
Gravity wave lensing provides a powerful tool for ma-

nipulating ocean waves. The efficiency of the idea is par-
ticularly significant over the shallower areas of the ocean
such as continental shelves. Wave lensing may substan-
tially contribute to the efficiency of ocean wave energy
devices by providing localized high-energy wave zones.
Therefore, instead of a large number of (small/low-
efficiency) wave energy devices dispersed over a wide
area, one (relatively large/high efficiency) device can be
placed at the focal point, receiving the majority of the
energy of the initial area. This should be of interest
of the environment and also the sea transportation as
the covered surface of the sea is significantly reduced.
Wave lensing may also have applications in, by dispers-
ing wave rays, creating localized safe havens for fisher-
men and sailors in open seas, or if implemented in large

scales to protect shores and harbors against strong storm
waves. Artificial surf zones, quiet beaches, and open-sea
water parks are other potential applications of the grav-
ity wave lensing. The lensing of ocean waves may also
happen by natural seabed features, and therefore further
care must be take into account for the proper placement
of (nearshore) facilities particularly in the areas with sub-
stantial bottom variations.
Bragg scattering, although different in details, is a

common concept in solid state physics [30–32], optics
[33], acoustics [34, 35] and hydrodynamics [7, 11, 14].
The idea demonstrated here may have similar implica-
tions in any system admitting Bragg resonance and if its
medium can be freely architected.
Authors would like to thank L.A. Couston, S. Demooei,

R. Ghosh, M. Lehman, Y. Liang, Y. Fu, C. Funke for
their help in conducting the experiment. The support
from the American Bureau of Shipping is gratefully ac-
knowledged.
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I. DETAILS OF THE EXPERIMENTAL SETUP

In the experiment, two 1-Watt continuous wave lasers were used to create vertically oriented laser sheets in order
to shine the surface of the wave. The lasers were mounted 60 cm apart on aluminum profiles and connected to a
track with increments marked every 6 cm. The lasers excited the fluorescent dye Fluorescein. Fluorescein has an
absorption maximum at 494 nm and an emission maximum at 521 nm. Videos of the water surface were recorded
with a digital camera at 15 fps. The camera was positioned inside the wave tank and above the free surface. Videos
were taken of the surface starting in the middle plane and going to the plane 114 cm away from the centerplane. The
videos were converted into individual images and the images were analyzed in MATLAB. Canny edge detection was
used to determine intersection of the laser sheet and the water free surface in each image. A top-view of the middle
section of the wave tank is shown in figure 2.a with crests of the topography visible through the water.

II. CAPTION OF SUPPLEMENTARY VIDEOS

Supplementary Video 1: (Supp Mat 1 Comparing Com vs Exp.wmv)
Gravity wave lensing: experiment vs direct simulation.

The video shows side-by-side comparison of direct phase-resolved simulation of gravity lens with the experimental
results. A good agreement is seen almost everywhere. On the experimental side high amplitude waves are seen on
the left-end of the video which is due to the side wall of the tank (not modeled in the computation)

Supplementary Video 2: (Supp Mat 2 Lensing Experiment.wmv)
Gravity wave lensing experiment.

This video shows the raw footage of the experiment on gravity wave lensing at UC Berkeley’s Richmond Field Station.
High amplitude surface activity at the center line is clear. Laser and imaging equipment (including safety covers) are
not shown


